【題目】如圖,桌面內(nèi),直線l上擺放著兩塊大小相同的直角三角板,它們中較大銳角的度數(shù)為60°.將△ECD沿直線l向左平移到圖的位置,使E點(diǎn)落在AB上,即點(diǎn)E′,點(diǎn)P為AC與E′D′的交點(diǎn).
(1)求∠CPD′的度數(shù);
(2)求證:AB⊥E′D′.
【答案】解:(1)由平移的性質(zhì)知,DE∥D′E′,
∴∠CPD′=∠CED=60°;
(2)由平移的性質(zhì)知,CE∥C′E′,∠CED=∠C′E′D′=60°,
∴∠BE′C′=∠BAC=30°,
∴∠BE′D′=90°
∴AB⊥E′D′.
【解析】(1)由平移的性質(zhì)知,DE∥D′E′,利用兩直線平行,同位角相等得∠CPD′=∠CED,故可求出∠CPD',
(2)由平移的性質(zhì)知,CE∥C′E′,∠CED=∠C′E′D′,利用兩直線平行,同位角相等得∠BE′C′=∠BAC,故可求出∠BE′D'=90°,故結(jié)論可證.
【考點(diǎn)精析】通過靈活運(yùn)用平移的性質(zhì),掌握①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,BC=4cm,M,N兩點(diǎn)分別從A,B兩點(diǎn)以2cm/s和1cm/s的速度在矩形ABCD邊上沿逆時針方向運(yùn)動,其中有一點(diǎn)運(yùn)動到點(diǎn)D停止,當(dāng)運(yùn)動時間為秒時,△MBN為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(﹣3x)(2x2﹣5x﹣1)的結(jié)果是( )
A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3x C.﹣6x3+15x2 D.﹣6x3+15x2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如果把圖中任一條線段沿方格線平移1格稱為“1步”,那么要通過平移使圖中的3條線段首尾相接組成一個三角形,最少需要
A.4步
B.5步
C.6步
D.7步
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知MN⊥PQ于點(diǎn)O,點(diǎn)A、 是以MN為軸的對稱點(diǎn),而點(diǎn) 、A是以PQ為軸的對稱點(diǎn),求證:點(diǎn) 、 是以點(diǎn)O為對稱中心的對稱點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+1上的三點(diǎn),則y1 , y2 , y3的大小關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)據(jù):80,88,85,85,83,83,84.下列說法中錯誤的有( ) ①這組數(shù)據(jù)的平均數(shù)是84; ②這組數(shù)據(jù)的眾數(shù)是85:
③這組數(shù)據(jù)的中位數(shù)是84; ④這組數(shù)據(jù)的方差是36.
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com