如圖,點(diǎn)在拋物線上,過點(diǎn)作與軸平行的直線交拋物線于點(diǎn),延長分別與拋物線相交于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為,且

(1).當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2).當(dāng)為何值時(shí),四邊形的兩條對角線互相垂直;
(3).猜想線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:(1)點(diǎn)在拋物線上,且,,······························ 1分
點(diǎn)與點(diǎn)關(guān)于軸對稱,.························································ 2分
設(shè)直線的解析式為
.······················································································· 3分
解方程組,得.································································· 4分
(2)當(dāng)四邊形的兩對角線互相垂直時(shí),由對稱性得直線軸的夾角等于所以點(diǎn)的橫、縱坐標(biāo)相等,      5分
這時(shí),設(shè),代入,得
即當(dāng)時(shí),四邊形的兩條對角線互相垂直.········································· 6分
(3)線段.········································································································ 7分
點(diǎn)在拋物線,且
得直線的解析式為,
解方程組,得點(diǎn)······················································· 8分
由對稱性得點(diǎn),··················································· 9分

.                                                      10分解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)在拋物線上,過點(diǎn)作與軸平行的直線交拋物線于點(diǎn),延長分別與拋物線相交于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為,且

1.當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2.當(dāng)為何值時(shí),四邊形的兩條對角線互相垂直;

3.猜想線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 如圖,點(diǎn)在拋物線上,過點(diǎn)作與軸平行的直線交拋物線于點(diǎn),延長分別與拋物線相交于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為,且

 (1).當(dāng)時(shí),求點(diǎn)的坐標(biāo);

 

 (2).當(dāng)為何值時(shí),四邊形的兩條對角線互相垂直;

(3).猜想線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年湖南省長沙市九年級上學(xué)期畢業(yè)模擬考試(1)數(shù)學(xué)卷 題型:解答題

如圖,點(diǎn)在拋物線上,過點(diǎn)作與軸平行的直線交拋物線于點(diǎn),延長分別與拋物線相交于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為,且

(1). (4分) 當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2). (2分)當(dāng)為何值時(shí),四邊形的兩條對角線互相垂直;
(3). (4分) 猜想線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖南省長沙市九年級畢業(yè)學(xué)業(yè)考試模擬試卷(一)數(shù)學(xué)卷 題型:解答題

 如圖,點(diǎn)在拋物線上,過點(diǎn)作與軸平行的直線交拋物線于點(diǎn),延長分別與拋物線相交于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為,且

 (1).當(dāng)時(shí),求點(diǎn)的坐標(biāo);

 

 (2).當(dāng)為何值時(shí),四邊形的兩條對角線互相垂直;

(3).猜想線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案