【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的橫坐標(biāo)為﹣1,點(diǎn)B在x軸的負(fù)半軸上,AB=AO,∠ABO=30°,直線MN經(jīng)過(guò)原點(diǎn)O,點(diǎn)A關(guān)于直線MN的對(duì)稱(chēng)點(diǎn)A1在x軸的正半軸上,點(diǎn)B關(guān)于直線MN的對(duì)稱(chēng)點(diǎn)為B1 , 則∠AOM的度數(shù)為;點(diǎn)B1的縱坐標(biāo)為 .
【答案】75;-1
【解析】解:∵AB=AO,
∴∠AOB=∠ABO=30°.
∵點(diǎn)A關(guān)于直線MN的對(duì)稱(chēng)點(diǎn)A1在x軸的正半軸上,
∴直線MN垂直平分AA1 ,
∵直線MN經(jīng)過(guò)原點(diǎn)O,
∴AO=OA1 ,
∴∠AOM= ∠AOA1= (180°﹣∠AOB)= ×(180°﹣30°)=75°.
如圖,過(guò)A作AC⊥x軸于C,過(guò)B1作B1D⊥x軸于D.
∵點(diǎn)A的橫坐標(biāo)為﹣1,
∴OC=1,
∵AB=AO,
∴BO=2OC=2=OB1 ,
∵∠B1DO=90°,∠DOB1=∠AOB=30°,
∴B1D= OB1=1,
∵點(diǎn)B1在第四象限,
∴點(diǎn)B1的縱坐標(biāo)為﹣1,
所以答案是:75°;﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑OA的長(zhǎng)為2,點(diǎn)B是⊙O上的動(dòng)點(diǎn),以AB為半徑的⊙A與線段OB相交于點(diǎn)C,AC的延長(zhǎng)線與⊙O相交于點(diǎn)D.設(shè)線段AB的長(zhǎng)為x,線段OC的長(zhǎng)為y.
(1)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出定義域;
(2)當(dāng)四邊形ABDO是梯形時(shí),求線段OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)將△ABC向下平移1個(gè)單位,向右平移7個(gè)單位,在給定方格紙中畫(huà)出平移后的△A′B′C′;畫(huà)出AB邊上的中線CD;畫(huà)出BC邊上的高線AE;
(2)△A′B′C′的面積為 .
(3)在右圖中能使S△PAC=S△ABC的格點(diǎn)P的個(gè)數(shù)有個(gè)(點(diǎn)P異于B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】氣溫由-1℃上升2℃后是……………………………………………………………………( )
A. -1℃ B. 1℃ C. 2℃ D. 3℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有足夠多的邊長(zhǎng)為a的小正方形(A類(lèi)),長(zhǎng)為b寬為a的長(zhǎng)方形(B類(lèi))以及邊長(zhǎng)為b的大正方形(C類(lèi)) ,發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些長(zhǎng)方形來(lái)解釋某些等式,比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2
(1)取圖①中的若干個(gè)(三種圖形都要取到)拼成一個(gè)長(zhǎng)方形,使其面積為(2a+b)(a+2b),在下面虛框中畫(huà)出圖形,并根據(jù)圖形回答(2a+b)(a+2b)= .
(2)若取其中的若干個(gè)(三種圖形都要取到)拼成一個(gè)長(zhǎng)方形,使其面積為a2+5ab+6b2 . ①你畫(huà)的圖中需C類(lèi)卡片張.
②可將多項(xiàng)式a2+5ab+6b2分解因式為
(3)如圖③,大正方形的邊長(zhǎng)為m,小正方形的邊長(zhǎng)為n,若用x、y表示四個(gè)相同矩形的兩邊長(zhǎng)(x>y),觀察圖案并判斷,將正確關(guān)系式的序號(hào)填寫(xiě)在橫線上(填寫(xiě)序號(hào)) ①xy= ②x+y=m ③x2﹣y2=mn ④x2+y2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點(diǎn)F在DA的延長(zhǎng)線上,F(xiàn)E⊥BC”,其它條件不變,求∠DFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱(chēng)點(diǎn)為D,連接BD,CD,其中CD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖1;
(2)若∠PAB=30°,求∠ACE的度數(shù);
(3)如圖2,若60°<∠PAB<120°,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com