如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,Rt△ABC的頂點(diǎn)均在個(gè)點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-6,1),點(diǎn)B的坐標(biāo)為(-3,1),點(diǎn)C的坐標(biāo)為(-3,3).
(1)將Rt△ABC沿x軸正方向平移5個(gè)單位得到Rt△A1B1C1,試在圖上畫出的圖形Rt△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)將原來(lái)的Rt△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到Rt△A2B2C2,試在圖上畫出Rt△A2B2C2的圖形.
(1)(2)所畫圖形如下所示,從圖中可以看出點(diǎn)A1的坐標(biāo)為(-1,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將正方形ABCD中的△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△CBP的位置,若BP=4,求點(diǎn)P所走過(guò)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

先將一矩形ABCD置于直角坐標(biāo)系中,使點(diǎn)A與坐標(biāo)系的原點(diǎn)重合,邊AB,AD分別落在x軸、y軸上(如圖1),再將此矩形在坐標(biāo)平面內(nèi)按逆時(shí)針?lè)较蚶@原點(diǎn)旋轉(zhuǎn)30°(如圖2),若AB=4,BC=3,則圖1和圖2中點(diǎn)B點(diǎn)的坐標(biāo)為_(kāi)_____,點(diǎn)C的坐標(biāo)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC.
(1)如果AB=AC,∠BAC=90°
①當(dāng)點(diǎn)D在線段BC上時(shí)(不與點(diǎn)B重合),如圖1,請(qǐng)你判斷線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系(直接寫出結(jié)論);
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),請(qǐng)你在圖2中畫出圖形,并判斷①中的結(jié)論是否仍然成立,并證明你的判斷.
(2)如圖3,若點(diǎn)D在線段BC上運(yùn)動(dòng),DF⊥AD交線段CE于點(diǎn)F,且∠ACB=45°,AC=3
2
,試求線段CF長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖小正六邊形的邊長(zhǎng)是大六邊形的一半,O是小正六邊形的中心,A是小正六邊形的一個(gè)頂點(diǎn).若小正六邊形沿大六邊形內(nèi)側(cè)滾動(dòng)一周,回到原位置,則OA轉(zhuǎn)動(dòng)的角度大小為(  )
A.240°B.360°C.540°D.720°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

矩形OABC在坐標(biāo)系中的位置如圖所示,OC=2,OA=4,把矩形OABC繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到矩形OA1B1C1,則點(diǎn)B1的坐標(biāo)為( 。
A.(2,4)B.(-2,4)C.(4,2)D.(2,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,將線段OA繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,記點(diǎn)A(-1,
3
)的對(duì)應(yīng)點(diǎn)為A1,則A1的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點(diǎn),且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點(diǎn)B為旋轉(zhuǎn)中心,將△BEC按逆時(shí)針旋轉(zhuǎn)∠ABC,得到△BE′A(點(diǎn)C與點(diǎn)A重合,點(diǎn)E到點(diǎn)E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點(diǎn),且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖,A的坐標(biāo)為(3,3),B的坐標(biāo)為(4,0),

①請(qǐng)?jiān)谥苯亲鴺?biāo)系中畫出△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后的圖形△A'B'C;
②點(diǎn)A'的坐標(biāo)為(______,______),點(diǎn)B'的坐標(biāo)為(______,______).
(2)在圖①中作出該圓的圓心,在圖②中作出該圓的內(nèi)接正六邊形.(不寫作法,保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊(cè)答案