【題目】如圖,已知∠BAD=∠CAD,則下列條件中不一定能使△ABD≌△ACD的是( 。
A.∠B=∠CB.∠BDA=∠CDAC.AB=ACD.BD=CD
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線l1:y=2x+3與直線l2:y=kx+b的交點A在y軸上,直線l3:y=x與直線l1相交于點B與直線l2相交于點C(1,1).
(1)求直線l2的解析式和B點的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點E是AC的中點,線段AE以A為中心順時針旋轉(zhuǎn),點E落在線段BE上的D處,線段CE以C為中心順時針旋轉(zhuǎn),點E落在BE的延長線上的點F處,連接AF,CD.
(1)求證:四邊形ADCF是平行四邊形;
(2)當BD=CD時,探究線段AB,BC,BF三者之間的等量關(guān)系,并證明;
(3)在(2)的條件下,若DE=1,試求BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述中,正確的是
A.直角三角形中,兩邊的平方和等于第三邊的平方
B.如果一個三角形中兩邊的平方差等于第三邊的平方,那么這個三角形是直角三角形
C.在中,,, 的對邊分別為 , , ,若 ,則
D.在 中, , , 的對邊分別為 , , ,若 ,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與軸的交點為,則下列說法不正確的是( )
A. 拋物線開口向上
B. 拋物線的對稱軸是
C. 當時,的最大值為
D. 拋物線與軸的交點為,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時間(月份)與市場售價(元/千克)的關(guān)系如下表:
上市時間(月份) | 1 | 2 | 3 | 4 | 5 | 6 |
市場售價(元/千克) | 10.5 | 9 | 7.5 | 6 | 4.5 | 3 |
這種蔬菜每千克的種植成本(元/千克)與上市時間(月份)滿足一個函數(shù)關(guān)系,這個函數(shù)的圖象是拋物線的一段(如圖).
(1)寫出上表中表示的市場售價(元/千克)關(guān)于上市時間(月份)的函數(shù)關(guān)系式;
(2)若圖中拋物線過點,寫出拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值為多少?(收益=市場售價-種植成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,進價是元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是元時,銷售量是件,而銷售單價每漲元,就會少售出件玩具.
不妨設(shè)該種品牌玩具的銷售單價為元,請你分別用的代數(shù)式來表示銷售量件和銷售該品牌玩具獲得利潤元,并把結(jié)果填寫在表格中:
銷售單價(元) | |
銷售量(件) | ________ |
銷售玩具獲得利潤(元) | ________ |
在問條件下,若商場獲得了元銷售利潤,求該玩具銷售單價應(yīng)定為多少元.
在問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于元,且商場要完成不少于件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點F,過點F作DE∥BC,分別交AB、AC于點D、E,那么下列結(jié)論:①△BDF和△CEF都是等腰三角形;②F為DE中點;③△ADE的周長等于AB與AC的和;④BF=CF.其中正確的有( )
A.①③B.①②③C.①②D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如圖),此圖揭示了(a+b)n(n為非負整數(shù))展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.
例如:
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
…
請你猜想(a+b)9的展開式中所有系數(shù)的和是( )
A.2018B.512C.128D.64
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com