【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求這個拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN有最大值?最大值是多少?

(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.

【答案】(1)y=﹣x2+x+2(2)當t=2時,MN有最大值4(3)D點坐標為(0,6),(0,﹣2)或(4,4)

解析解:(1)分別交y軸、x軸于A、B兩點,

A、B點的坐標為:A(0,2),B(4,0)。

將x=0,y=2代入y=﹣x2+bx+c得c=2;

將x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=。

拋物線解析式為:y=﹣x2+x+2。

(2)如圖1,

設(shè)MN交x軸于點E,則E(t,0),BE=4﹣t。

,

ME=BEtanABO=(4﹣t)× =2﹣t。

N點在拋物線上,且xN=t,yN=﹣t2+t+2

。

當t=2時,MN有最大值4。

(3)由(2)可知,A(0,2),M(2,1),N(2,5).

如圖2,

以A、M、N、D為頂點作平行四邊形,D點的可能位置有三種情形

(i)當D在y軸上時,設(shè)D的坐標為(0,a),

由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,

從而D為(0,6)或D(0,﹣2)。

(ii)當D不在y軸上時,由圖可知D為D1N與D2M的交點,

由D1(0,6),N(2,5)易得D1N的方程為y=x+6;

由D2(0,﹣2),M(2,1)D2M的方程為y=x﹣2。

由兩方程聯(lián)立解得D為(4,4)。

綜上所述,所求的D點坐標為(0,6),(0,﹣2)或(4,4)。

(1)首先求得A、B點的坐標,然后利用待定系數(shù)法求拋物線的解析式。

(2)求得線段MN的表達式,這個表達式是關(guān)于t的二次函數(shù),利用二次函數(shù)的極值求線段MN的最大值。

(3)明確D點的可能位置有三種情形,如圖2所示,不要遺漏.其中D1、D2在y軸上,利用線段數(shù)量關(guān)系容易求得坐標;D3點在第一象限,是直線D1N和D2M的交點,利用直線解析式求得交點坐標

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在課外研究中,設(shè)計如下題目:直線過點,直線與曲線交于點

1)求直線和曲線的關(guān)系式.(圖1

2)小明發(fā)現(xiàn)曲線關(guān)于直線對稱,他把曲線與直線的交點叫做曲線的頂點.(圖2

①直接寫出點的坐標;

②若點點出發(fā)向上運動,運動到時停止,求此時的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在斜邊長為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3;……;依次作下去,則第n個正方形AnBnCnDn的邊長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=2x2+m.(1)若點(-2,y1)與(3,y2)在此二次函數(shù)的圖象上,則y1_________y2(填、“=”);(2)如圖,此二次函數(shù)的圖象經(jīng)過點(0,-4),正方形ABCD的頂點C、Dx軸上,A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,, , 的延長線于.

(1)求證:

(2)如果連結(jié),請寫出的關(guān)系并證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了落實黨的“精準扶貧”政策,甲、乙兩城決定向、兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知甲、乙兩城共有肥料800噸,其中乙城肥料是甲城的2倍少100噸,從甲城往、兩鄉(xiāng)運肥料的費用分別為20元噸和25元噸;從乙城往、兩鄉(xiāng)運肥料的費用分別為15元噸和26元噸.現(xiàn)鄉(xiāng)需要肥料440噸,鄉(xiāng)需要肥料360噸.

1)甲城和乙城各有多少噸肥料?

2)設(shè)從甲城運往鄉(xiāng)肥料噸,總運費為元,求出最少總運費.

3)由于更換車型,使甲城運往鄉(xiāng)的運費每噸減少元,這時從甲城運往鄉(xiāng)肥料多少噸才能使總運費最少,最少是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在O中,半徑OC垂直于弦AB,垂足為點D,點EOC的延長線上,∠EAC=∠BAC

(1)求證:AEO的切線;

(2)AB8cosE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形△ABC中,O為底邊BC的中點,以O為圓心作半圓與ABAC相切,切點分別為D,E.過半圓上一點F作半圓的切線,分別交AB,ACMN.那么的值等于( 。

A.B.C.D.1

查看答案和解析>>

同步練習冊答案