已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點(diǎn)對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時(shí)以每秒1個(gè)單位的速度沿x軸方向分別向左、向右運(yùn)動,此時(shí)記A,B,C,D,M,N在某一時(shí)刻的新位置分別為A′,B′,C′,D′,M′,N′,當(dāng)點(diǎn)A′與點(diǎn)D′重合時(shí)運(yùn)動停止.在運(yùn)動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時(shí)運(yùn)動時(shí)間t(秒)的值,若不能,說明理由.
(1)∵拋物線 y=-2x2+bx-6過點(diǎn) A(1,0)
∴0=-2+b-6,
∴b=8,
∴拋物線 C1的解析式為 y=-2x2+8x-6=-2(x-2)2+2,
∴M(2,2),
令y=0,則-2x2+8x-6=0,
解這個(gè)方程,得 x1=1,x2=3,
∴m=3;

(2)由題意,拋物線 過點(diǎn)C(-3,0),D(-1,0),頂點(diǎn)坐標(biāo)為:N(-2,-2),
故設(shè)解析式為:y=a(x+2)2-2,將C(-3,0),帶入得出:a=2,
∴拋物線C2 的解析式為:y=2(x+2)2-2=2x2+8x+6;

(3)過點(diǎn)M 作 MH⊥x軸于點(diǎn)H,
若四邊形是矩形B′M′C′N′,則 OB′=OM′,
由題意,設(shè)M′(2-t,2)B′(3-t,0),則H (2-t,0),
在Rt△M′OH中,OH2+M′H2=OM′2=OB′2
∴(t-2)2+22=(t-3)2,
解得t=
1
2
,
∴t=
1
2
秒時(shí),四邊形B′M′C′N′是 矩形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動.
請?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)M,使得線段PB最短;若存在,請求出此時(shí)點(diǎn)M的坐標(biāo).若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),A(3,0)、B(m,
6
5
)是以O(shè)A為直徑的⊙M上的兩點(diǎn),且tan∠AOB=
1
2
,BH⊥x軸,垂足為H
(1)求H點(diǎn)的坐標(biāo);
(2)求圖象經(jīng)過A、B、O三點(diǎn)的二次函數(shù)的解析式;
(3)設(shè)點(diǎn)C為(2)中的二次函數(shù)圖象的頂點(diǎn),問經(jīng)過B、C兩點(diǎn)的直線是否與⊙M相切,請說明理由.
注:拋物線y=ax2+bx+c(c≠0)的頂點(diǎn)為(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+3經(jīng)過點(diǎn)A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,延長DP交x軸于點(diǎn)F,M(m,0)是x軸上一動點(diǎn),N是線段DF上一點(diǎn),當(dāng)△BDC的面積最大時(shí),若∠MNC=90°,請直接寫出實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx經(jīng)過點(diǎn)A(-3,-3)和點(diǎn)P(t,0),且t≠0.
(1)若t=-4,求拋物線的解析式,并指出此時(shí)拋物線的開口方向;
(2)如圖,拋物線y=ax2+bx的對稱軸經(jīng)過點(diǎn)A,觀察圖象并回答:
y的最小值=______;
t的值=______;
當(dāng)x>-3時(shí),y隨x的增大而______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線y=a(x-2)2-2的頂點(diǎn)為C,拋物線與x軸交于A,B兩點(diǎn)(其中A點(diǎn)在B點(diǎn)的左邊),CH⊥AB于H,且tan∠ACH=
1
2

(1)求拋物線的解析式;
(2)在坐標(biāo)平面內(nèi)是否存在一點(diǎn)D,使得以O(shè)、B、C、D為頂點(diǎn)的四邊形是等腰梯形?若存在,求所有的符合條件的D點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)如圖2,將(1)中的拋物線平移,使其頂點(diǎn)在y軸的正半軸上,在y軸上是否存在一點(diǎn)M,使得平移后的拋物線上的任意一點(diǎn)P到x軸的距離與P點(diǎn)到M的距離相等?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙M是以點(diǎn)M(4,0)為圓心,5個(gè)單位長度為半徑的圓.⊙M與x軸交于點(diǎn)A、B(A在B的左側(cè)),⊙M與y軸的正半軸交于點(diǎn)C.
求:(1)點(diǎn)A、B、C的坐標(biāo);
(2)經(jīng)過點(diǎn)A、B、C三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,一座拋物線型拱橋,橋下水面寬度是4m,拱高是2m,當(dāng)水面下降1m后,水面寬度是多少?(
6
=2.45,結(jié)果保留0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-2ax與直線l:y=ax(a>0)的交點(diǎn)除了原點(diǎn)O外,還相交于另一點(diǎn)A.
(1)分別求出這個(gè)拋物線的頂點(diǎn)、點(diǎn)A的坐標(biāo)(可用含a的式子表示);
(2)將拋物線y=ax2-2ax沿著x軸對折(翻轉(zhuǎn)180°)后,得到的圖象叫做“新拋物線”,則:①當(dāng)a=1時(shí),求這個(gè)“新拋物線”的解析式,并判斷這個(gè)“新拋物線”的頂點(diǎn)是否在直線l上;②在①的條件下,“新拋物線”上是否存在一點(diǎn)P,使點(diǎn)P到直線l的距離等于線段OA的
1
24
?若存在,請直接寫出滿足條件的點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案