【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q為CD上一個(gè)動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于點(diǎn)N,作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP= BD;③BN+DQ=NQ;④ 為定值.其中一定成立的是 .
【答案】①②③④
【解析】解:如圖1所示:
作AU⊥NQ于U,連接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四點(diǎn)共圓,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN,故①正確.
由同角的余角相等知,∠HAM=∠PMN,
在△AHM和△MPN中,
,
∴△AHM≌△MPN(AAS),
∴MP=AH= AC= BD,故②正確,
∵∠BAN+∠QAD=∠NAQ=45°,
∴△ADQ繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90度至△ABR,使AD和AB重合,連接AN,
則∠RAQ=90°,△ABR≌△ADQ,
∴AR=AQ,∠RAN=90°﹣45°=45°=∠NAM,
在△AQN和△ANR中,
,
∴△AQN≌△ANR(SAS),
∴NR=NQ,
則BN=NU,DQ=UQ,
∴點(diǎn)U在NQ上,有BN+DQ=QU+UN=NQ,故③正確.
如圖2所示,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點(diǎn)M是對(duì)角線BD上的點(diǎn),
∴四邊形SMWB是正方形,
∴MS=MW=BS=BW,∠SMW=90°,
∴∠AMS=∠NMW,
在△AMS和△NMW中,
,
∴△AMS≌△NMW(ASA),
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴ = = ,故④正確.
所以答案是:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE為⊙O的切線;
(2)若⊙O的半徑為5,∠BAC=60°,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,中,,點(diǎn)為上一點(diǎn),交于點(diǎn),交于點(diǎn).
(1)若,則 °;
(2)若點(diǎn)是的中點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年5月14日川航3U863航班擋風(fēng)玻璃在高空爆裂,機(jī)組臨危不亂,果斷應(yīng)對(duì),正確處置,順利返航,避免了一場(chǎng)災(zāi)難的發(fā)生,創(chuàng)造了世界航空史上的奇跡!下表給出了距離地面高度與所在位置的溫度之間的大致關(guān)系.根據(jù)下表,請(qǐng)回答以下幾個(gè)問(wèn)題:
距離地面高度(千米) | 0 | 1 | 2 | 3 | 4 | 5 |
所在位置的溫度(℃) | 20 | 14 | 8 | 2 |
|
(1)上表反映的兩個(gè)變量中,______是自變量,______是因變量.
(2)若用h表示距離地面的高度,用y表示表示溫度,則y與h的之間的關(guān)系式是:__________;
當(dāng)距離地面高度5千米時(shí),所在位置的溫度為:_________℃.
如圖是當(dāng)日飛機(jī)下降過(guò)程中海拔高度與玻璃爆裂后立即返回地面所用時(shí)間關(guān)系圖.根據(jù)圖象回答以下問(wèn)題:
(3)點(diǎn)A表示的意義是什么?返回途中飛機(jī)在2千米高空水平大約盤旋了幾分鐘?
(4)飛機(jī)發(fā)生事故時(shí)所在高空的溫度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?
(3)若M為AP的中點(diǎn),N為PB的中點(diǎn).點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:計(jì)算
(1)計(jì)算:( )﹣1﹣3tan30°+(1﹣π)0 .
(2)解分式方程: = ﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線和直線互相垂直,垂足為,直線于點(diǎn)B,E是線段AB上一定點(diǎn),D為線段OB上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)O、B重合),直于點(diǎn),連接AC.
(1)當(dāng),則___________°;
(2)當(dāng)時(shí),請(qǐng)判斷CD與AC的位置關(guān)系,并說(shuō)明理由;
(3)若、的角平分線的交點(diǎn)為P,當(dāng)點(diǎn)D在線段上運(yùn)動(dòng)時(shí),問(wèn)的大小是否會(huì)發(fā)生變化?若不變,求出的大小,并說(shuō)明理由;若變化,求其變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是 = =;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線BC上一定點(diǎn),點(diǎn)A在直線外一定點(diǎn).在直線BC上取點(diǎn)P,使得以O、A、P為頂點(diǎn)的三角形為等腰三角形.
(1)當(dāng)∠AOC=30°時(shí),如果我們通過(guò)分類討論、畫圖嘗試可以找到滿足條件的點(diǎn)P共有______個(gè).
(2)若在直線BC上有且只有兩個(gè)滿足條件的點(diǎn)P,則∠AOC=______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com