【題目】我們把分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù),如:,,任何一個(gè)單位分?jǐn)?shù)都可以拆分成兩個(gè)不同的單位分?jǐn)?shù)的和,如“=+”,“=+……

1)根據(jù)對(duì)上述式子的觀察,你會(huì)發(fā)現(xiàn).=·請(qǐng)將問題中的空格補(bǔ)充完整.

2)進(jìn)一步思考,單位分?jǐn)?shù)n是不小于2的正整數(shù)),請(qǐng)寫出■和●所表示的代數(shù)式,并對(duì)你的結(jié)論進(jìn)行驗(yàn)證.

3)請(qǐng)用(2)中你找出的規(guī)律解方程

【答案】1742;(2,驗(yàn)證見解析;(3x=7

【解析】

1)由已知式子可知等號(hào)左邊的分母等于右邊最后的分母與前面分母的商來(lái)確定出所求即可;
2)歸納總結(jié)得到一般性規(guī)律,確定出所求,驗(yàn)證即可;

3)根據(jù)所得規(guī)律解方程即可.

1)根據(jù)題意得:

故答案為:7,42;

2)根據(jù)題意得:,

驗(yàn)證:

則等式成立;

3)由(2)知:,

∴原方程可變形為:

整理得,2x+2=x+9

解得,x=7,

經(jīng)檢驗(yàn),x=7是原方程的根,

∴原方程的解為:x=7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn),與軸交于點(diǎn)

1)直接寫出拋物線的解析式為:;

2)點(diǎn)為第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),作軸于點(diǎn),交于點(diǎn),過點(diǎn)的垂線與拋物線的對(duì)稱軸和軸分別交于點(diǎn),,設(shè)點(diǎn)的橫坐標(biāo)為

①求的最大值;

②連接,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=∠B30°,過點(diǎn)CCDAC,交AB于點(diǎn)D

1)作⊙O,使⊙O經(jīng)過AC、D三點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)判斷直線 BC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BABC,以AB為直徑作O,交AC于點(diǎn)D,連接DB,過點(diǎn)DDEBC,垂足為E

(1)求證:ADCD

(2)求證:DEO的切線.

(3)若∠C=60°,DE,求O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分11分.

如圖,已知直線y=-x +3分別與x、y軸交于點(diǎn)AB

1)求點(diǎn)A、B的坐標(biāo);

2)求原點(diǎn)O到直線l的距離;

3)若圓M的半徑為2,圓心My軸上,當(dāng)圓M與直線l相切時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在反比例函數(shù)上,軸于點(diǎn),點(diǎn)軸正半軸上,,、的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,且,點(diǎn)是線段延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),的外接圓軸的另一個(gè)交點(diǎn)是

(1)求點(diǎn)和點(diǎn)的坐標(biāo);

(2)求反比例函數(shù)的解析式;

(3)連接的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)是A(1,3),將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到OB,點(diǎn)B恰好在拋物線上,OB與拋物線的對(duì)稱軸交于點(diǎn)C

1)求拋物線的解析式;

2P是線段AC上一動(dòng)點(diǎn),且不與點(diǎn)A,C重合,過點(diǎn)P作平行于x軸的直線,與的邊分別交于M,N兩點(diǎn),將以直線MN為對(duì)稱軸翻折,得到

設(shè)點(diǎn)P的縱坐標(biāo)為m

①當(dāng)內(nèi)部時(shí),求m的取值范圍;

②是否存在點(diǎn)P,使,若存在,求出滿足m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售AB兩種新型小家電,A型每臺(tái)進(jìn)價(jià)40元,售價(jià)50元,B型每臺(tái)進(jìn)價(jià)32元,售價(jià)40元,4月份售出A40臺(tái),且銷售這兩種小家電共獲利不少于800元.

1)求4月份售出B型小家電至少多少臺(tái)?

2)經(jīng)市場(chǎng)調(diào)查,5月份A型售價(jià)每降低1元,銷量將增加10臺(tái);B型售價(jià)每降低1元,銷量將在4月份最低銷量的基礎(chǔ)上增加15臺(tái).為盡可能讓消費(fèi)者獲得實(shí)惠,商場(chǎng)計(jì)劃5月份A、B兩種小家電都降低相同價(jià)格,且希望銷售這兩種小家電共獲利965元,則這兩種小家電都應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答

(1)解不等式①,得___________;

(2)解不等式②,得___________;

(3)把不等式①和②的解集在數(shù)軸上表示出來(lái):

(4)原不等式組的解集為_______________

查看答案和解析>>

同步練習(xí)冊(cè)答案