(2013•常德)如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=
13
,AD=1.
(1)求BC的長;
(2)求tan∠DAE的值.
分析:(1)先由三角形的高的定義得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根據(jù)勾股定理求出BD=2
2
,然后根據(jù)BC=BD+DC即可求解;
(2)先由三角形的中線的定義求出CE的值,則DE=CE-CD,然后在Rt△ADE中根據(jù)正切函數(shù)的定義即可求解.
解答:解:(1)在△ABC中,∵AD是BC邊上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,
∴DC=AD=1.
在△ADB中,∵∠ADB=90°,sinB=
1
3
,AD=1,
∴AB=
AD
sinB
=3,
∴BD=
AB2-AD2
=2
2
,
∴BC=BD+DC=2
2
+1;

(2)∵AE是BC邊上的中線,
∴CE=
1
2
BC=
2
+
1
2
,
∴DE=CE-CD=
2
-
1
2

∴tan∠DAE=
DE
AD
=
2
-
1
2
點評:本題考查了三角形的高、中線的定義,勾股定理,解直角三角形,難度中等,分別解Rt△ADC與Rt△ADB,得出DC=1,AB=3是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知⊙O是△ABC的外接圓,若∠BOC=100°,則∠BAC=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知⊙O是等腰直角三角形ADE的外接圓,∠ADE=90°,延長ED到C使DC=AD,以AD,DC為鄰邊作正方形ABCD,連接AC,連接BE交AC于點H.求證:
(1)AC是⊙O的切線.
(2)HC=2AH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案