【題目】某蔬菜市場為指導某種蔬菜的生產(chǎn)和銷售,對往年的市場行情和生產(chǎn)情況進行了調(diào)查,提供的信息如下:

信息1:售價和月份滿足一次函數(shù)關系,如下表所示.

月份

3

6

售價

5

3

信息2:成本和月份滿足二次函數(shù)關系,并且知道該種蔬菜在6月成本達到最低為1/千克,9月成本為4/千克.

根據(jù)以上信息回答下列問題:

1)在7月,這種蔬菜的成本是多少元每千克?

2)在過去的一年中,某商家平均每天賣出該種蔬菜,則哪個月的利潤最大,最大利潤為多少?(一個月按30天計算)

【答案】1)在7月,這種蔬菜的成本是/千克;(25月利潤最大,最大利潤為1400元.

【解析】

1)用待定系數(shù)法求出一次函數(shù)解析式,設二次函數(shù)的頂點式,用待定系數(shù)法,求出二次函數(shù)的解析式,進而即可求解;

2)設每千克蔬菜的利潤為,得到關于x的二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì),求出的最大值,即可.

1)設售價和月份的一次函數(shù)關系式為,

代入,得:,解得:

設成本和月份的二次函數(shù)關系式為,

代入,得:,解得:,

x=7時,=

答:在7月,這種蔬菜的成本是/千克;

2)設每千克蔬菜的利潤為,則

0

∴當時,有最大值,最大值為

5月總利潤為(元).

答:5月利潤最大,最大利潤為1400元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校調(diào)查了若干名家長對“初中生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,根據(jù)圖中提供的信息,完成以下問題:

1)本次共調(diào)查了   名家長;扇形統(tǒng)計圖中“很贊同”所對應的圓心角是   度.已知該校共有1600名家長,則“不贊同”的家長約有   名;請補全條形統(tǒng)計圖;

2)從“不贊同”的五位家長中(兩女三男),隨機選取兩位家長對全校家長進行“學生使用手機危害性”的專題講座,請用樹狀圖或列表法求出選中“11女”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸相交于點A(﹣3,0)、點B10),與y軸交于點C03),點D是拋物線上一動點,聯(lián)結OD交線段AC于點E

1)求這條拋物線的解析式,并寫出頂點坐標;

2)求∠ACB的正切值;

3)當AOEABC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點A關于角B的角平分線的對稱點為E,點E關于角C的角平分線的對稱點為F,若ADAB3,則SADF=( 。

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁上,它在離杯上沿且與蜂蜜相對的處,則螞蟻從外壁處走到內(nèi)壁處,至少爬多少厘米才能吃到蜂蜜(

A.24B.25C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點,點在第四象限, 軸,.

(1)的值及點的坐標;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E為矩形ABCDAD上一點,點P,點Q同時從點B出發(fā),點P沿運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是,設P,Q出發(fā)t秒時,的面積為,已知yt的函數(shù)關系的圖象如圖曲線OM為拋物線的一部分,則下列結論:直線NH的解析式為;不可能與相似;時,秒.其中正確的結論個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線yax2+bx+ca≠0)的頂點為C(1,4),交x軸于AB兩點,交y軸于點D,其中點B的坐標為(3,0)

1)求拋物線的解析式;

2)如圖2,點P為直線BD上方拋物線上一點,若,請求出點P的坐標.

3)如圖3M為線段AB上的一點,過點MMNBD,交線段AD于點N,連接MD,若DNM∽△BMD,請求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點O為圓心,OA為半徑作弧交AB于點C,交OB于點D,若OA4,則陰影部分的面積為_____

查看答案和解析>>

同步練習冊答案