如圖,在平行四邊形ABCD中,BD=2AB,AC與BD相交于點O,點E、F、G分別是OC、OB、AD的中點.
求證:(1)DE⊥OC;
(2)EG=EF.
(1)證明見解析;(2)證明見解析.

試題分析:(1)由四邊形ABCD是平行四邊形,AC與BD相交于點O,根據(jù)平行四邊形的性質,即可得BD=2OD,AB=CD,AD=BC,又由BD=2AB,可得△ODC是等腰三角形,根據(jù)三線合一的性質,即可證得DE⊥OC;
(2)由DE⊥OC,點G是AD的中點,利用直角三角形斜邊上的中線等于斜邊的一半,即可得EG=AD,又由三角形中位線的性質,求得EF=BC,則可證得EG=EF.
試題解析:(1)∵四邊形ABCD是平行四邊形,AC與BD相交于點O,
∴BD=2OD,AB=CD,AD=BC.
∵BD=2AB,
∴OD=AB=CD.
∵點E是OC的中點,
∴DE⊥OC.
(2)∵DE⊥OC,點G是AD的中點,
∴EG=AD; 
∵點E、F分別是OC、OB的中點.
∴EF=BC.
∵AD=BC,
∴EG=EF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉中心逆時針旋轉,設旋轉角為. 在旋轉過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.
(1)當正方形AEFG旋轉至如圖2所示的位置時,求證:BE=DG;
(2)當點C在直線BE上時,連接FC,直接寫出∠FCD 的度數(shù);
(3)如圖3,如果=45°,AB =2,AE=,求點G到BE的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在圖1至圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE和AD在同一直線上.
操作示例:
當AE<a時,如圖1,在BA上選取適當?shù)狞cG,BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置,恰能構成四邊形FGCH.
思考發(fā)現(xiàn):小明在操作后發(fā)現(xiàn):該剪拼方法是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上,連接CH.由剪拼方法可得DH=BG,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖所示),
實踐探究:
(1)小明判斷出四邊形FGCH是正方形,請你給出判斷四邊形FGCH是正方形的方法。
(2)經(jīng)測量,小明發(fā)現(xiàn)圖1中BG是AE一半,請你證明小明的發(fā)現(xiàn)是正確的。(提示:過點F作FM⊥AH,垂足為點M);
拓展延伸
類比圖1的剪拼方法,請你就圖2至圖4的三種情形分別畫出剪拼成一個新正方形的示意圖

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC.CD上滑動,且E、F不與B.C.D重合.
(1)證明不論E、F在BC.CD上如何滑動,總有BE=CF;
(2)當點E、F在BC.CD上滑動時,分別探討四邊形AECF和△CEF的面積是否發(fā)生變化?如果不變,求出這個定值;如果變化,求出最大(或最小)值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.若AB=,AG=1,則EB=  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在ABCD中,∠ABC的平分線交AD于E,∠BED=150°,則∠A的大小為(   )
A.150°B.130°C.120°D.100°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法不正確的是(  )
A.有兩組對邊分別平行的四邊形是平行四邊形
B.平行四邊形的對角線互相平分
C.平行四邊形的對角互補,鄰角相等
D.平行四邊形的對邊平行且相等

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖),把線段AE繞點A旋轉,
使點E落在直線BC上的點F處,則F、C兩點的距離為____________ .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知正方形ABCD的邊長a,點E是AB的中點,在對角線BD上找一點P,且PE+PA的最小值為2根號5則a=      .

查看答案和解析>>

同步練習冊答案