【題目】如圖①,中,,、∠C的平分線交于點(diǎn),過(guò)點(diǎn)作交、于、.試回答:
(1)圖中等腰三角形有________個(gè).猜想:與、之間的關(guān)系是________.說(shuō)明理由;
(2)如圖②,若,圖中等腰三角形有________個(gè),在第(1)問(wèn)中與、間的關(guān)系還存在嗎?
(3)如圖③,若中的平分線與三角形外角平分線交于,過(guò)點(diǎn)作交于,交于,這時(shí)圖中還有等腰三角形嗎?與、關(guān)系又如何?說(shuō)明你的理由.
【答案】(1) 5個(gè),;(2)見(jiàn)解析;(3) 見(jiàn)解析.
【解析】
(1)根據(jù)等腰三角形的判定、平分線的性質(zhì)及角平分線可得有5個(gè)等腰三角形, 由△EOB和△FOC是等腰三角形,則EO=BE,OF=FC,則EF=BE+FC;
(2)由(1)的證明過(guò)程可知:在證△OEB、△OFC是等腰三角形的過(guò)程中,與AB=AC的條件沒(méi)有關(guān)系,故這兩個(gè)等腰三角形還成立.所以(1)中得出的EF=BE+FC的結(jié)論仍成立.
(3)思路與(2)相同,只不過(guò)結(jié)果變成了EF=BE-FC.
解:(1)如圖1,圖中共有5個(gè)等腰三角形,分別是△AEF、△OEB、△OFC、△OBC、△ABC;
理由是:∵AB=AC,
∴∠ACB=∠ABC,△ABC是等腰三角形;
∵BO、CO分別平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠ABC,∠OCB=∠ACO=∠ACB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,
∴△EOB、△OBC、△FOC都是等腰三角形,
∵EF∥BC,
∴∠AEF=∠ABC,∠AFE=∠ACB,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形,
∴圖中是等腰三角形的有:、、、、.
、、的關(guān)系是.理由如下:
∵、平分、,
∴,,
∵,
∴,,
即,,
∴.
(2)2個(gè)
存在(1)的結(jié)論仍然成立.(證明過(guò)程同(1)).
(3)和仍是等腰三角形,.理由如下:
同(1)可證得是等腰三角形.
∵,
∴,
∵平分,
∴,
∴,故是等腰三角形,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本
(1)求每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與坐標(biāo)軸交點(diǎn)的坐標(biāo)分別為,,.
求此函數(shù)的解析式;
求拋物線的開(kāi)口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo);
根據(jù)圖象直接寫出時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】楊陽(yáng)同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過(guò)程中,通過(guò)隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語(yǔ),其具體信息匯集如下:
如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語(yǔ)CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中點(diǎn),AE與BD相交于點(diǎn)F,連接DE.
(1)求證:△ABE≌△BCD;
(2)判斷線段AE與BD的數(shù)量關(guān)系及位置關(guān)系,并說(shuō)明理由;
(3)若CD=1,試求△AED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)a2(﹣a4)+2(a2)3
(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)
(3)(2x﹣3y)2+2(y+3x)(3x﹣y)
(4)(a﹣2b+3)(a+2b+3)
(5)
(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的骰子,骰子的六個(gè)面分別刻有1到6的點(diǎn)數(shù),朝上的面的點(diǎn)數(shù)中,一個(gè)點(diǎn)數(shù)能被另一個(gè)點(diǎn)數(shù)整除的概率是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn).
他們?cè)谝淮螌?shí)驗(yàn)中共擲骰子次,試驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | ||||||
出現(xiàn)的次數(shù) |
①填空:此次實(shí)驗(yàn)中“點(diǎn)朝上”的頻率為________;
②小紅說(shuō):“根據(jù)實(shí)驗(yàn),出現(xiàn)點(diǎn)朝上的概率最大.”她的說(shuō)法正確嗎?為什么?
小穎和小紅在實(shí)驗(yàn)中如果各擲一枚骰子,那么兩枚骰子朝上的點(diǎn)數(shù)之和為多少時(shí)的概率最大?試用列表或畫樹(shù)狀圖的方法加以說(shuō)明,并求出其最大概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑OD⊥AB,與AC交于點(diǎn)E,與過(guò)點(diǎn)C的⊙O切線交于點(diǎn)D.
(1)若AC=6,BC=3,求OE的長(zhǎng).
(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com