把兩個整數(shù)平方得到的數(shù)“拼”起來(即按一定順序?qū)懺谝黄穑┖笕匀坏玫揭粋平方數(shù),則稱最后得到的這個數(shù)為“拼方數(shù)”.如把整數(shù)4,3分別平方后得到16,9,拼成的數(shù)“169”是13的平方,稱“169”是“拼方數(shù)”.在下列數(shù)中,屬于“拼方數(shù)”的是( 。
A.225B.494C.361D.1219
A、∵225=152,但22與5或2與25均不是兩個整數(shù)平方得到的數(shù),∴225不屬于“拼方數(shù)”,故本選項錯誤;
B、∵494可以看作把整數(shù)7,2分別平方后得到49,4拼成的,但494不是整數(shù)的平方,∴494不屬于“拼方數(shù)”,故本選項錯誤;
C、∵361可以看作把整數(shù)6,1分別平方后得到36,1拼成的數(shù),是19的平方,∴361屬于“拼方數(shù)”,故本選項正確;
D、∵1219可以看作把整數(shù)11,3分別平方后得到121,9拼成的,但1219不是整數(shù)的平方,∴1219不屬于“拼方數(shù)”,故本選項錯誤.
故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

2、把兩個整數(shù)平方得到的數(shù)“拼”起來(即按一定順序?qū)懺谝黄穑┖笕匀坏玫揭粋平方數(shù),則稱最后得到的這個數(shù)為“拼方數(shù)”.如把整數(shù)4,3分別平方后得到16,9,拼成的數(shù)“169”是13的平方,稱“169”是“拼方數(shù)”.在下列數(shù)中,屬于“拼方數(shù)”的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、(1)李剛同學在計算122和892時,借助計算器探究“兩位數(shù)的平方”有否簡捷的計算方法.他經(jīng)過探索并用計算器驗證,再用數(shù)學知識解釋,得出“兩位數(shù)的平方”可用“豎式計算法”進行計算,
如:122=144.其中第一行的“01”和“04”分別是十位數(shù)和個位數(shù)的平方,各占兩個位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們并排排列;第二行的“04”為十位數(shù)與個位數(shù)積的2倍,占兩個位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們按上面的豎式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分別是十位數(shù)和個位數(shù)的平方,各占兩個位置,再把它們并排排列;第二行的“144”為十位數(shù)與個位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892=7921.
①請你用上述方法計算752和682(寫出“豎式計算”過程);
②請你用數(shù)學知識解釋這種“兩位數(shù)平方的豎式計算法”合理性.
(2)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-l
(n為正整數(shù));
②根據(jù)這一規(guī)律,計算:1+2+22+23+24+…+22008+22009=
22010-l
( n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

古埃及人用下面的方法得到直角三角形,把一根長繩打上等距離的13個結(jié)(12段),然后用樁釘釘成一個三角形,如圖1,其中∠C便是直角.

(1)請你選擇古埃及人得到直角三角形這種方法的理由
B
B
(填A或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長a、b、c有關(guān)系:a2+b2=c2,那么這個三角形是直角三角形
(2)如果三個正整數(shù)a、b、c滿足a2+b2=c2,那么我們就稱 a、b、c是一組勾股數(shù),請你寫出一組勾股數(shù)
(6,8,10)
(6,8,10)

(3)仿照上面的方法,再結(jié)合上面你寫出的勾股數(shù),你能否只用繩子,設(shè)計一種不同于上面的方法得到一個直角三角形(在圖2中,只需畫出示意圖.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)李剛同學在計算122和892時,借助計算器探究“兩位數(shù)的平方”有否簡捷的計算方法.他經(jīng)過探索并用計算器驗證,再用數(shù)學知識解釋,得出“兩位數(shù)的平方”可用“豎式計算法”進行計算,
如:122=144.其中第一行的“01”和“04”分別是十位數(shù)和個位數(shù)的平方,各占兩個位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們并排排列;第二行的“04”為十位數(shù)與個位數(shù)積的2倍,占兩個位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們按上面的豎式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分別是十位數(shù)和個位數(shù)的平方,各占兩個位置,再把它們并排排列;第二行的“144”為十位數(shù)與個位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892=7921.
①請你用上述方法計算752和682(寫出“豎式計算”過程);
②請你用數(shù)學知識解釋這種“兩位數(shù)平方的豎式計算法”合理性.
(2)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=______(n為正整數(shù));
②根據(jù)這一規(guī)律,計算:1+2+22+23+24+…+22008+22009=______( n為正整數(shù)).

查看答案和解析>>

同步練習冊答案