【題目】如圖,曲線C由上半橢圓 和部分拋物線 連接而成,C1與C2的公共點為A,B,其中C1的離心率為

(1)求a,b的值;
(2)過點B的直線l與C1 , C2分別交于點P,Q(均異于點A,B),是否存在直線l,使得PQ為直徑的圓恰好過點A,若存在直線l的方程;若不存在,請說明理由.

【答案】
(1)

解:在C1,C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半橢圓C1的左右頂點,

設(shè)C1的半焦距為c,由 及a2﹣c2=b2﹣1,

可得a=2,所以a=2,b=1


(2)

解:由(1),上半橢圓C1的方程為 ,

由題意知,直線l與x軸不重合也不垂直,設(shè)其方程為y=k(x﹣1)(k≠0),

代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0,

設(shè)點P的坐標(biāo)為(xP,yP),

因為直線l過點B,所以x=1是方程的一個根,

由求根公式,得 ,所以點P的坐標(biāo)為

同理,由 ,得點Q的坐標(biāo)為(﹣k﹣1,﹣k2﹣2k),

所以 ,

依題意可知AP⊥AQ,所以 ,即 ,

,

因為k≠0,所以k﹣4(k+2)=0,解得

經(jīng)檢驗, 符合題意,故直線l的方程為


【解析】(1)在C1 , C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半橢圓C1的左右頂點,設(shè)C1的半焦距為c,由 及a2﹣c2=b2﹣1,聯(lián)立解得a.(2)由(1),上半橢圓C1的方程為 ,由題意知,直線l與x軸不重合也不垂直,設(shè)其方程為
y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0,設(shè)點P的坐標(biāo)為(xP , yP),由求根公式,得點P的坐標(biāo)為 ,同理,由 ,得點Q的坐標(biāo)為(﹣k﹣1,﹣k2﹣2k),依題意可知AP⊥AQ,所以 ,即可得出k.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當(dāng)天參與網(wǎng)購的顧客中隨機抽查了男女各30人,統(tǒng)計其網(wǎng)購金額,得到如下頻率分布直方圖:

網(wǎng)購達人

非網(wǎng)購達人

合計

男性

30

女性

12

30

合計

60

若網(wǎng)購金額超過2千元的顧客稱為“網(wǎng)購達人”,網(wǎng)購金額不超過2千元的顧客稱為“非網(wǎng)購達人”.
(Ⅰ)若抽取的“網(wǎng)購達人”中女性占12人,請根據(jù)條件完成上面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購達人”與性別有關(guān)?
(Ⅱ)該營銷部門為了進一步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定12人,若需從這12人中隨機選取3人進行問卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購達人”的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
(參考公式: ,其中n=a+b+c+d)

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2(1nx﹣a)+a,則下列結(jié)論中錯誤的是(
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實數(shù)a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x有兩個相異極值點x1、x2 , 求證: + >2ae.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)列{an}中,a1=4,an>0,前n項和為Sn , 若
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列 的前n項和為Tn , 求Tn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π]的部分圖象如圖所示,若A( , ),B( ),則函數(shù)f(x)的單調(diào)增區(qū)間為(
A.[﹣ +2kπ, +2kπ](k∈Z)
B.[ +2kπ, +2kπ](k∈Z)
C.[﹣ +kπ, +kπ](k∈Z)
D.[ +kπ, +kπ](k∈Z)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點為F(1,0),且經(jīng)過點
(1)求橢圓P的方程;
(2)已知正方形ABCD的頂點A,C在橢圓P上,頂點B,D在直線7x﹣7y+1=0上,求該正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD在坐標(biāo)系中如圖所示放置.已知點B、C在x軸上,點A在第二象限,D(2,4),BC=6,反比例函數(shù)y= (x<0)的圖象經(jīng)過點A.
(1)求k值;
(2)把矩形ABCD向左平移,使點C剛好與原點重合,此時線段AB與反比例函數(shù)y= 的交點坐標(biāo)是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,QN是⊙O的切線,連接MQ交⊙O于點H,E為上一點,連接ME,NE,NE交MQ于點F,且ME2=EFEN.

(1)求證:QN=QF;
(2)若點E到弦MH的距離為1,cos∠Q=,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案