(1)計(jì)算:2-1-tan60°+(
2
-1)
0
+|-
3
|

(2)畫(huà)出函數(shù)y=
1
x
(x>0)的圖象;
(3)如圖,O是矩形ABCD的對(duì)角線的交點(diǎn),DEAC,CEBD,DE和CE相交于E,
求證:四邊形OCED是菱形.
(1)原式=
1
2
-
3
+1+
3
,
=
3
2
;
(2)列表得:
x
1
2
123
y21
1
2
1
3
描點(diǎn),連線得:
(3)證明:∵DEAC,CEBD,
∴四邊形OCED是平行四邊形,
∵四邊形ABCD是矩形,
∴AC與BD相等且互相平分,
∴OD=OC,
∴四邊形OCDE是菱形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且ADBC,AD=BC,如果補(bǔ)上下列條件中的,可以使四邊形ABCD為矩形( 。
A.AC⊥BDB.AB=ADC.AB=CDD.AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點(diǎn)C是
AB
上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連接DE,點(diǎn)G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形;
(2)當(dāng)點(diǎn)C在
AB
上運(yùn)動(dòng)時(shí),在CD、CG、DG中,是否存在長(zhǎng)度不變的線段?若存在,請(qǐng)求出該線段的長(zhǎng)度;
(3)求證:CD2+3CH2是定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

矩形ABCD中,橫向陰影部分是長(zhǎng)方形,另一部分是平行四邊形,依照?qǐng)D中標(biāo)注的數(shù)據(jù),圖中空白部分的面積為( 。
A.bc-ab+ac+c2B.a(chǎn)b-bc-ac+c2
C.a(chǎn)2+ab+bc-acD.b2-bc+a2-ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形ABCD,AE⊥CD,若AE=4,BC=5,則AC•BD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長(zhǎng)是48cm.求:
(1)兩條對(duì)角線的長(zhǎng)度;
(2)菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在菱形ABCD中,E是AB邊上的中點(diǎn),作EFBC,交對(duì)角線AC于點(diǎn)F.若EF=4,則CD的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,菱形ABCD的對(duì)角線的長(zhǎng)分別為2和5,P是對(duì)角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合)且PEBC交AB于E,PFCD交AD于F,則陰影部分的面積是( 。
A.2B.
5
2
C.3D.
5
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知菱形ABCD的一個(gè)內(nèi)角為60°,較短對(duì)角線的長(zhǎng)為4,則另一條對(duì)角線長(zhǎng)為( 。
A.2
3
B.4
3
C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案