【題目】如圖,在11×11的正方形網(wǎng)格中,△TAB的頂點分別為T(1,1),A(2,3),B(4,2).
(1)以點T(1,1)為位似中心,按比例尺(TA′:TA)3:1,在位似中心的同側(cè)將△TAB放大為△TA′B′,放大后點A,B的對應點分別為A′,B′,畫出△TA′B′,并寫出點A′,B′的坐標;點A′的坐標為 ,點B′的坐標為
(2)在(1)中,若C(a,b)為線段AB上任一點,寫出變化后點C的對應點C′的坐標為 .
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC外分別以AB,AC為邊作△AEB與△AFC.
(1)如圖1,△AEB與△AFC分別是以AB,AC為斜邊的等腰直角三角形,連接EF.以EF為直角邊構(gòu)造Rt△EFG,且EF=FG,連接BG,CG,EC.
求證:①△AEF≌△CGF;②四邊形BGCE是平行四邊形.
(2)小明受到圖1的啟發(fā)做了進一步探究:
如圖2,在△ABC外分別以AB,AC為斜邊作Rt△AEB與Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中點D,連接DE,EF后發(fā)現(xiàn),兩者間存在一定的數(shù)量關系且夾角度數(shù)一定,請你幫助小明求出的值及∠DEF的度數(shù).
(3)小穎受到啟發(fā)也做了探究:
如圖3,在△ABC外分別以AB,AC為底邊作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中點D,連接DE,EF后發(fā)現(xiàn),當給定∠EAB=α時,兩者間也存在一定的數(shù)量關系且夾角度數(shù)一定,若AE=m,AB=n,請你幫助小穎用含m,n的代數(shù)式直接寫出的值,并用含α的代數(shù)式直接表示∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,.點從點開始沿邊向點以的速度移動,與此同時,點從點開始沿邊向點以的速度移動.設、分別從、同時出發(fā),運動時間為,當其中一點先到達終點時,另一點也停止運動.解答下列問題:
(1)經(jīng)過幾秒,的面積等于?
(2)是否存在這樣的時刻,使線段恰好平分的面積?若存在,求出運動時間;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸交于點B,與y軸交于點C,拋物線y=﹣x2+bx+c經(jīng)過B,C兩點,與x軸另一交點為A.點P以每秒個單位長度的速度在線段BC上由點B向點C運動(點P不與點B和點C重合),設運動時間為t秒,過點P作x軸垂線交x軸于點E,交拋物線于點M.
(1)求拋物線的解析式;
(2)如圖①,過點P作y軸垂線交y軸于點N,連接MN交BC于點Q,當時,求t的值;
(3)如圖②,連接AM交BC于點D,當△PDM是等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為x m.
(1)設垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關系式;
(2)若菜園面積為384 m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的 速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.
(1)當t= 時,PQ∥AB
(2)當t為何值時,△PCQ的面積等于5cm2?
(3)在P、Q運動過程中,在某一時刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應的t值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),與y軸交點為(0,3),其部分圖象如圖所示,則下列結(jié)論錯誤的是( 。
A. b﹣4ac≥0
B. 關于x的方程ax+bx+c﹣3=0有兩個不相等的實數(shù)根
C. a﹣b+c=0
D. 當y>0時,﹣1<x<3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于點A(﹣2,0)與點C(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.
(1)求該二次函數(shù)的解析式;
(2)若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB, PD,BD,AB.請問是否存在點P,使得△BDP的面積恰好等于△ADB的面積?若存在請求出此時點P的坐標,若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點C(0,-2),頂點D的坐標為(1,),與軸交于A、B兩點.
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點,當△AOC∽△AEB時,求點E的坐標和的值.
(3)點F(0,)是軸上一動點,當為何值時,的值最小.并求出這個最小值.
(4)點C關于軸的對稱點為H,當取最小值時,在拋物線的對稱軸上是否存在點Q,使△QHF是直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com