【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.

(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.

【答案】
(1)

解:FG⊥ED.理由如下:

∵△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,

∴∠DEB=∠ACB,

∵把△ABC沿射線平移至△FEG,

∴∠GFE=∠A,

∵∠ABC=90°,

∴∠A+∠ACB=90°,

∴∠DEB+∠GFE=90°,

∴∠FHE=90°,

∴FG⊥ED;


(2)

證明:根據(jù)旋轉(zhuǎn)和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,

∵CG∥EB,

∴∠BCG=∠CBE=90°,

∴四邊形BCGE是矩形,

∵CB=BE,

∴四邊形CBEG是正方形


【解析】(1)根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直;(2)根據(jù)旋轉(zhuǎn)和平移找出對應(yīng)線段和角,然后再證明是矩形,后根據(jù)鄰邊相等可得四邊形CBEG是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點O為對稱中心,再畫出與△ABC關(guān)于原點O對稱的△A2B2C2 , 并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點M從點D出發(fā),以每秒2個單位長度的速度向點A運動,同時,點N從點B出發(fā),以每秒1個單位長度的速度向點C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP⊥AD于點P,連接AC交NP于點Q,連接MQ.設(shè)運動時間為t秒.

(1)AM= , AP= . (用含t的代數(shù)式表示)
(2)當(dāng)四邊形ANCP為平行四邊形時,求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由
②使四邊形AQMK為正方形,則AC等于.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB,CD相交于點O,AD,CB的延長線交于點E,OA=OC,EA=EC.

(1)試說明:∠A=∠C;

(2)在(1)的解答過程中,需要作輔助線,它的意圖是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,∠B=60°,點G是邊CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( 。

A.a3a2a6B.ab32a2b6

C.ab2a2b2D.5a3a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】霧霾天氣影響著我國北方中東部地區(qū),給人們的健康帶來嚴重的危害.為了讓人們對霧霾有所了解.?dāng)z影師張超通過顯微鏡,將空氣中細小的霾顆粒放大1000倍,發(fā)現(xiàn)這些霾顆粒平均直徑為10微米20微米,其中20微米(1米=1000000微米)用科學(xué)記數(shù)法可表示為( 。
A.2×105
B.0.2×104
C.2×105
D.2×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張騎自行車勻速從甲地到乙地,在途中休息了一段時間后,仍按原速行駛.他距乙地的距離y(km)與時間x(h)的關(guān)系如圖中折線所示,小李開車勻速從乙地到甲地,比小張晚出發(fā)一段時間,他距乙地的距離y(km)與時間x(h)的關(guān)系如圖中線段AB所示.

(1)小李到達甲地后,再經(jīng)過_______小時小張也到達乙地;小張騎自行車的速度是_______千米/小時.

(2)小張出發(fā)幾小時與小李相距15千米?

(3)若小李想在小張休息期間與他相遇,則他出發(fā)的時間x應(yīng)在什么范圍?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,D,E三點共線,C,B,F三點共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案