【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1: ,EF⊥CE,求EF:EG的值.
【答案】
(1)證明:如圖1,
在△ABC中,∵∠CAB=90°,AD⊥BC于點(diǎn)D,
∴∠CAD=∠B=90°﹣∠ACB.
∵AC:AB=1:2,
∴AB=2AC,
∵點(diǎn)E為AB的中點(diǎn),
∴AB=2BE,
∴AC=BE.
在△ACD與△BEF中,
,
∴△ACD≌△BEF,
∴CD=EF,即EF=CD
(2)解:如圖2,作EH⊥AD于H,EQ⊥BC于Q,
∵EH⊥AD,EQ⊥BC,AD⊥BC,
∴四邊形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°﹣∠QEG,
又∵∠EQF=∠EHG=90°,
∴△EFQ∽△EGH,
∴EF:EG=EQ:EH.
∵AC:AB=1: ,∠CAB=90°,
∴∠B=30°.
在△BEQ中,∵∠BQE=90°,
∴sinB= = ,
∴EQ= BE.
在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,
∴cos∠AEH= = ,
∴EH= AE.
∵點(diǎn)E為AB的中點(diǎn),
∴BE=AE,
∴EF:EG=EQ:EH= BE: AE=1: = :3
【解析】(1)根據(jù)同角的余角相等得出∠CAD=∠B,根據(jù)AC:AB=1:2及點(diǎn)E為AB的中點(diǎn),得出AC=BE,再利用AAS證明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先證明四邊形EQDH是矩形,得出∠QEH=90°,則∠FEQ=∠GEH,再由兩角對(duì)應(yīng)相等的兩三角形相似證明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根據(jù)正弦函數(shù)的定義得出EQ= BE,在△AEH中,根據(jù)余弦函數(shù)的定義得出EH= AE,又BE=AE,進(jìn)而求出EF:EG的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用相似三角形的判定與性質(zhì),掌握相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線(xiàn)AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、AC是⊙O的兩條弦∠A=25°,過(guò)點(diǎn)C的切線(xiàn)與OB的延長(zhǎng)線(xiàn)交于點(diǎn)D,則∠D的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩超市(大型商場(chǎng))同時(shí)開(kāi)業(yè),為了吸引顧客,都舉行有獎(jiǎng)酬賓活動(dòng):凡購(gòu)物滿(mǎn)100元,均可得到一次摸獎(jiǎng)的機(jī)會(huì).在一個(gè)紙盒里裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少.(如下表) 甲超市:
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 5 | 10 | 5 |
乙超市:
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 10 | 5 | 10 |
(1)用樹(shù)狀圖表示得到一次摸獎(jiǎng)機(jī)會(huì)時(shí)中禮金券的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會(huì)選擇去哪個(gè)超市購(gòu)物?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過(guò)點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),若AB=17,BD=12,
(1)求證:△BCD≌△ACE;
(2)求DE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ADB和△ADC中,下列條件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知 , .
(1)在圖中,用尺規(guī)作出 的內(nèi)切圓 ,并標(biāo)出 與邊 , , 的切點(diǎn) , , (保留痕跡,不必寫(xiě)作法);
(2)連接 , ,求 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A(3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn).
(1)寫(xiě)出C點(diǎn)、D點(diǎn)的坐標(biāo):C __________,D ____________ ;
(2)把這些點(diǎn)按A-B-C-D-A順次連接起來(lái),這個(gè)圖形的面積是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com