若函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn),則常數(shù)m的值是   
0或1

試題分析:①若,則函數(shù)是一次函數(shù),與x軸只有一個(gè)交點(diǎn);
②若,則函數(shù)是二次函數(shù).
根據(jù)題意得:△,解得
所以或1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過(guò)y軸上的一個(gè)定點(diǎn);
⑵若該函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,將其繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn),則旋轉(zhuǎn)后的拋物線的解析式為(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車租賃公司擁有20輛汽車.據(jù)統(tǒng)計(jì),當(dāng)每輛車的日租金為400元時(shí),可全部租出;當(dāng)未租出的車將增加1輛,每輛車的日租金每增加50元,;公司平均每日的各項(xiàng)支出共4800元.設(shè)公司每日租出工輛車時(shí),日收益為y元.(日收益=日租金收入一平均每日各項(xiàng)支出)
(1)公司每日租出x輛車時(shí),每輛車的日租金為      元(用含x的代數(shù)式表示);
(2)當(dāng)每日租出多少輛時(shí),租賃公司日收益最大?最大是多少元?
(3)當(dāng)每日租出多少輛時(shí),租賃公司的日收益不盈也不虧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB分別交y軸、x 軸于A、B兩點(diǎn),OA=2,,拋物線過(guò)A、B兩點(diǎn).

(1)求直線AB和這個(gè)拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t 取何值時(shí),MN的長(zhǎng)度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某農(nóng)戶計(jì)劃利用現(xiàn)有的一面墻(墻長(zhǎng)8米),再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).

(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=2(x-3)2+1的頂點(diǎn)坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將二次函數(shù)y=x2的圖象向右平移一個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度所得的圖象解析式為( 。
A.y=(x﹣1)2+3B.y=(x+1)2+3
C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線,a是常數(shù)且,下列選項(xiàng)中可能是它大致圖像的是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案