【題目】已知,△ABC是等邊三角形,過(guò)點(diǎn)C作CD∥AB,且CD=AB,連接BD交AC于點(diǎn)O.
(1)如圖1,求證:AC垂直平分BD;
(2)如圖2,點(diǎn)M在BC的延長(zhǎng)線上,點(diǎn)N在線段CO上,且ND=NM,連接BN.求證:NB=NM.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)根據(jù)△ABC是等邊三角形,確定∠ABC=∠ACB=∠CAB=60°,然后再根據(jù)平行線的性質(zhì)確定∠ACD=∠A=60°=∠ACB,即可解決問(wèn)題.(2)根據(jù)垂直平分線的性質(zhì),即垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,確定NB=ND,再根據(jù)ND=NM以此解決問(wèn)題.
解(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠CAB=60°
∵AB//CD,
∴∠ACD=∠A=60°=∠ACB,CD=AB=BC,
∴BO=DO,CO⊥BD,
∴AC垂直平分BD.
(2)證明:∵AC垂直平分BD(已證),
∴NB=ND
又∵ND=NM
∴NB=NM
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在畫有方格圖的平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)將△ACB繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn),在方格圖中用直尺畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1C1B,則A1點(diǎn)的坐標(biāo)是(_________),C1點(diǎn)的坐標(biāo)是(_________).
(2)在方格圖中用直尺畫出△ACB關(guān)于原點(diǎn)O的中心對(duì)稱圖形△A2C2B2,則A2點(diǎn)的坐標(biāo)是(_________),C2點(diǎn)的坐標(biāo)是(_________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,的垂直平分線交于,交于.
(1)若,求的度數(shù);
(2)若,的周長(zhǎng)17,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在和中,連接AC,BD交于點(diǎn)M,AC與OD相交于E,BD與OA相較于F,連接OM,則下列結(jié)論中:①;②;③;④MO平分,正確的個(gè)數(shù)有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的兩條高線,且它們相交于是邊的中點(diǎn),連結(jié),與相交于點(diǎn),已知.
(1)求證BF=AC.
(2)若BE平分.
①求證:DF=DG.
②若AC=8,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在梯形ABCD中,AD∥BC,AB=CD,BD=BC,點(diǎn)E在對(duì)角線BD上,且∠DCE=∠DBC.
(1)求證:AD=BE;
(2)延長(zhǎng)CE交AB于點(diǎn)F,如果CF⊥AB,求證:4EFFC=DEBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)點(diǎn),,且滿足,點(diǎn)在直線的左側(cè),且.
(1)求的值;
(2)若點(diǎn)在軸上,求點(diǎn)的坐標(biāo);
(3)若為直角三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題原型:如圖①,在銳角△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,在AD上取點(diǎn)E,使DE=CD,連結(jié)BE.求證:BE=AC.
問(wèn)題拓展:如圖②,在問(wèn)題原型的條件下,F(xiàn)為BC的中點(diǎn),連結(jié)EF并延長(zhǎng)至點(diǎn)M,使FM=EF,連結(jié)CM.
(1)判斷線段AC與CM的大小關(guān)系,并說(shuō)明理由.
(2)若AC=,直接寫出A、M兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,以為直徑的交于,交于,交于,點(diǎn)為延長(zhǎng)線上的一點(diǎn),延長(zhǎng)交于,.小華得出個(gè)結(jié)論:①;②;③.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com