【題目】已知關(guān)于x的方程x2+(2m+1)x+m20有兩個(gè)根x1,x2.

(1)m的取值范圍.

(2)當(dāng)x12+x1x20時(shí),求m的值.

【答案】(1)m≤(2)m的值為0.

【解析】

(1)利用判別式的意義得到△=(2m1)24m2=﹣4m+1≥0,然后解關(guān)于m的不等式即可;(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=﹣(2m+1),x1x2m2,再利用x12+x1x20得到x10x1+x20當(dāng)x10時(shí),x1x2m20;當(dāng)x1+x20時(shí),即﹣(2m1)0,然后分別解關(guān)于m的方程得到滿足條件的m的值;

解:

(1)根據(jù)題意得△=(2m1)24m2=﹣4m+1≥0

m≤;

(2)根據(jù)題意得x1+x2=﹣(2m+1)x1x2m2,

x12+x1x20

x1(x1+x2 )0

x10x1+x20

當(dāng)x10時(shí),x1x2m20,解得m0

當(dāng)x1+x20時(shí),即﹣(2m1)0,解得m,

又∵m≤

m不符合題意,舍去,

綜上所述,m的值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx﹣3的圖象與x軸的兩個(gè)交點(diǎn)分別為A(1,0)、B(3,0),與y軸的交點(diǎn)為C

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)在x軸上方的二次函數(shù)圖象上,是否存在一點(diǎn)E使得以BC、E為頂點(diǎn)的三角形的面積為?若存在,求出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把△ABC 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) n 度(0<n<180)后得到△ADE,并使點(diǎn) D 落在 AC 的延長(zhǎng)線上.

(1)若∠B=17°,∠E=55°,求 n;

(2)F BC 的中點(diǎn),G DE 的中點(diǎn),連 AG、AF、FG,求證:△AFG 為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB90°,ACBC,DAB邊上一點(diǎn)(點(diǎn)DA,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段CE,連結(jié)BE

1)求證:ACD≌△BCE

2)當(dāng)∠125°時(shí),求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°,∠ABC25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△ABC,且點(diǎn)A在邊AB′上,則旋轉(zhuǎn)角的度數(shù)為( 。

A. 65°B. 60°C. 50°D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的內(nèi)接三角形,把沿BC折疊后,與弦AB交于點(diǎn)P,恰好.若,,則等于

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用6個(gè)小正方形構(gòu)造如圖所示的網(wǎng)格圖(每個(gè)小正方形的邊長(zhǎng)均為2),設(shè)經(jīng)過(guò)圖中M、P、H三點(diǎn)的圓弧與AH交于R,則圖中陰影部分面積( )

A.πB.π5C.5D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于點(diǎn)、點(diǎn),在軸上存在一點(diǎn),使的周長(zhǎng)最小,則點(diǎn)的坐標(biāo)是____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過(guò)點(diǎn)OOFBCF,若BD=8cm,AE=2cm,

(1)求⊙O的半徑;

(2)O到弦BC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案