【題目】如圖,矩形ABCD的邊長(zhǎng)AB2BC4,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BCDA的路線運(yùn)動(dòng),設(shè)△ABP的面積為S,點(diǎn)P走過的路程為x

1)當(dāng)點(diǎn)PCD邊上運(yùn)動(dòng)時(shí),△ABP的面積是否變化,請(qǐng)說明理由;

2)求Sx之間的函數(shù)關(guān)系式;

3)當(dāng)S2時(shí),求x的值.

【答案】(1)不變化.(2)S.(3)x8

【解析】

1)利用三角形的面積公式計(jì)算即可判斷.

2)分三種情形:當(dāng)0≤x≤4時(shí),當(dāng)4x≤6時(shí),當(dāng)6x≤10時(shí),分別求解即可.

3)分三種情形分別求解即可解決問題.

解:(1)結(jié)論:不變化.

理由:因?yàn)?/span>,所以不變化.

2)當(dāng)0≤x≤4時(shí),

當(dāng)4x≤6時(shí),

當(dāng)6x≤10時(shí),AP10x

綜上所述,S

3)當(dāng)0≤x≤4時(shí),x2

當(dāng)4x≤6時(shí),4≠2,

不存在,

當(dāng)6x≤10時(shí),﹣x+102,

解得x8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)0 RtABC斜邊AB上的一點(diǎn),以OA 為半徑的☉OBC切于點(diǎn)D,與AC 交于點(diǎn)E,連接AD.

(1) 求證: AD平分∠BAC;

(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,且過點(diǎn)(1,1),點(diǎn)F0,)在y軸上,直線y軸交于點(diǎn)H,

1)求二次函數(shù)的解析式;

2)點(diǎn)P是(1)中圖象上的點(diǎn),過點(diǎn)Px軸的垂線與直線交于點(diǎn)M,求證:FM平分∠OFP

3)當(dāng)點(diǎn)P橫坐標(biāo)為時(shí),過O點(diǎn)作OQOP交拋物線于點(diǎn)Q,在y軸上找點(diǎn)C,使OCQ是以OQ為腰的等腰三角形,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“你記得父母的生日嗎?”這是某中學(xué)在七年級(jí)學(xué)生中開展主題為“感恩”教育時(shí) 設(shè)置的一個(gè)問題,有以下四個(gè)選項(xiàng):A.父母生日都記得;B.只記得母親生日;C.只 記得父親生日;D.父母生日都不記得.在隨機(jī)調(diào)查了(1)班和(2)班各 50 名學(xué) 生后,根據(jù)相關(guān)數(shù)據(jù)繪出如圖所示的統(tǒng)計(jì)圖.

1)補(bǔ)全頻數(shù)分布直方圖;

2)已知該校七年級(jí)共 900 名學(xué)生,據(jù)此推算,該校七年級(jí)學(xué)生中,“父母生日都 不記得”的學(xué)生共多少名?

3)若兩個(gè)班中“只記得母親生日”的學(xué)生占 22%,則(2)班“只記得母親生日” 的學(xué)生所占百分比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與O相離,OAl于點(diǎn)A,交O于點(diǎn)P,點(diǎn)B是O上一點(diǎn),連接BP并延長(zhǎng),交直線l于點(diǎn)C,使得AB=AC.

(1)求證:AB是O的切線;

(2)若PC=,OA=3,求O的半徑和線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=﹣x+4分別與x軸、y軸交于點(diǎn)A,B,雙曲線k0x0)與直線l不相交,E為雙曲線上一動(dòng)點(diǎn),過點(diǎn)EEGx軸于點(diǎn)G,EFy軸于點(diǎn)F,分別與直線l交于點(diǎn)C,D,且∠COD45°,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,E,F分別為BCCD的中點(diǎn),連接AE,BF交于點(diǎn)G,將BCF沿BF對(duì)折,得到BPF,延長(zhǎng)FPBA延長(zhǎng)線于點(diǎn)Q,分析下列四個(gè)結(jié)論:

QB=QF;②BG=;③tanBQP=;④S四邊形ECFG=2SBGE,其中正確的是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,AB=4,EAC的中點(diǎn),D是直線BC上一動(dòng)點(diǎn),線段ED繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到線段EF,當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),則AF的最小值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案