【題目】學(xué)校統(tǒng)籌安排大課間體育活動,在各班隨機(jī)選取了一部分學(xué)生,分成四類活動:跳繩、羽毛球、乒乓球、其他進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如圖的兩幅統(tǒng)計(jì)圖.

1)學(xué)校采用的調(diào)查方式是      ;學(xué)校在各班隨機(jī)選取了      名學(xué)生;

2)補(bǔ)全統(tǒng)計(jì)圖中的數(shù)據(jù):羽毛球    人、乒乓球     人、其他      %;

3)該校共有900名學(xué)生,請估計(jì)喜歡跳繩的學(xué)生人數(shù).

【答案】1)抽樣調(diào)查,100;(22118;(3)喜歡“跳繩”的學(xué)生人數(shù)為324人.

【解析】

1)根據(jù)“在各班隨機(jī)選取了一部分學(xué)生”可知是抽樣調(diào)查,然后利用“跳繩”的人數(shù)為36人,并且占總?cè)藬?shù)的進(jìn)一步計(jì)算抽取人數(shù)即可;

2)分別用“羽毛球”、“乒乓球”占的百分比乘以抽取人數(shù)進(jìn)行計(jì)算出相對應(yīng)人數(shù),然后用1減去“羽毛球”、“乒乓球”、“跳繩”的百分比即可得出“其他”的百分比;

(3)利用樣本估計(jì)總體,用900乘以“跳繩”的百分比進(jìn)一步計(jì)算即可.

1)由“在各班隨機(jī)選取了一部分學(xué)生”可知是抽樣調(diào)查,

又∵ ,

∴抽取總?cè)藬?shù)為100人,

故答案為:抽樣調(diào)查,100;

2)由(1)可得抽取總?cè)藬?shù)為100人,

∴“羽毛球”人數(shù)為:(人),

“乒乓球”人數(shù)為:(人),

由扇形統(tǒng)計(jì)圖可得:“其他“的百分比為:

故答案為:21,18,

3(人),

答:喜歡“跳繩”的學(xué)生人數(shù)為324人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某住宅小區(qū)如圖所示,小區(qū)東西兩端的樓、之間的距離為,某開發(fā)商準(zhǔn)備在位于樓的北偏東方向,且在樓的北偏西方向上的處蓋一個商業(yè)大廈,如果施工期間,產(chǎn)生的噪音會影響到方圓處.請你通過計(jì)算說明住宅小區(qū)是否會有住戶受到噪音的影響.(參考數(shù)據(jù),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A+∠B+∠C+∠D+∠E+∠F=_______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)和點(diǎn)的坐標(biāo)分別為,拋物線的對稱軸為為拋物線的頂點(diǎn).

求拋物線的解析式.

拋物線的對稱軸上是否存在一點(diǎn),使為等腰三角形?若存在,寫出點(diǎn)點(diǎn)的坐標(biāo),若不存在,說明理由.

點(diǎn)為線段上一動點(diǎn),過點(diǎn)軸的垂線,與拋物線交于點(diǎn),求四邊形面積的最大值,以及此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形的邊分別在軸,軸上,點(diǎn)在邊上,將該長方形沿折疊,點(diǎn)恰好落在邊上的點(diǎn)處,若,,則所在直線的表達(dá)式為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=k0)與矩形OABC在第一象限相交于D、E兩點(diǎn),OA=2OC=4,連接OD、OE、DE.△OAD、△OCE的面積分別為S、S .

1點(diǎn)B的坐標(biāo)為 ②S S(填、、“=”);

2)當(dāng)點(diǎn)D為線段AB的中點(diǎn)時,求k的值及點(diǎn)E的坐標(biāo);

3)當(dāng)S+S=2時,試判斷△ODE的形狀,并求△ODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,C是O外一點(diǎn),AB=AC,連接BC,交O于點(diǎn)D,過點(diǎn)D作DEAC,垂足為E.

(1)求證:DE與O相切.

(2)B=30°,AB=4,則圖中陰影部分的面積是   (結(jié)果保留根號和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過點(diǎn)AACx軸于點(diǎn)C,過點(diǎn)BBDx軸于點(diǎn)D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點(diǎn)P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點(diǎn)P的坐標(biāo);

(3)x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(﹣3,﹣3).

(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;

(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;

(3)在(2)的條件下,直線BCy軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;

(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案