【題目】已知直線l1:y1=x+m與直線l2:y2=nx+3相交于點(diǎn)A(1,2).
(1)求m、n的值;
(2)設(shè)l1交x軸于點(diǎn)B,l2交x軸于點(diǎn)C,若點(diǎn)D與點(diǎn)A,B,C能構(gòu)成平行四邊形,請(qǐng)直接寫出D點(diǎn)坐標(biāo);
(3)請(qǐng)?jiān)谒o坐標(biāo)系中畫出直線l1和l2,并根據(jù)圖象回答問(wèn)題:
當(dāng)x滿足 時(shí),y1>2;
當(dāng)x滿足 時(shí),0<y2≤3;
當(dāng)x滿足 時(shí),y1<y2.
【答案】(1) m=1,n=﹣1;(2)D的坐標(biāo)為(5,2)或(﹣3,2)或(1,﹣2);(3)x>1、0≤x<3、x<1.
【解析】
試題分析:(1)根據(jù)待定系數(shù)法即可求得;
(2)根據(jù)平行四邊形的性質(zhì)求得即可;
(3)根據(jù)圖象求得即可.
解:(1)將點(diǎn)A(1,2)代入y1=x+m與y2=nx+3得2=1+m,2=n+3,
解得 m=1,n=﹣1;
(2)由直線l1:y1=x+1與直線l2:y2=﹣x+3可知:l1交x軸于點(diǎn)B(﹣1,0),l2交x軸于點(diǎn)C(3,0),如圖:
∵點(diǎn)D與點(diǎn)A,B,C能構(gòu)成平行四邊形,
∴D的坐標(biāo)為(5,2)或(﹣3,2)或(1,﹣2);
(3)根據(jù)圖象可知:當(dāng)x滿足x>1時(shí),y1>2;當(dāng)x滿足0≤x<3時(shí),0<y2≤3;
當(dāng)x滿足x<1時(shí),y1<y2.
故答案為:x>1、0≤x<3、x<1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=36°,兩條角平分線BE、CD相交于點(diǎn)O,則圖中等腰三角形有( )
A.3個(gè) B.5個(gè) C.7個(gè) D.8個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,2),直線y=與x軸、y軸分別交于點(diǎn)A,B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM長(zhǎng)的最小值為( )
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB∥CD,E是AB的中點(diǎn),CE=DE.
(1)求證:∠AED=∠BEC;
(2)連接AC、BD,求證:AC=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正確的有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用網(wǎng)格畫圖:
(1)過(guò)點(diǎn)C畫AB的平行線CD;
(2)過(guò)點(diǎn)C畫AB的垂線,垂足為E;
(3)線段CE的長(zhǎng)度是點(diǎn)C到直線 的距離;
(4)連接CA、CB,在線段CA、CB、CE中,線段 最短,理由: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,下列條件不能判斷△ABC是直角三角形的是( )
A.∠A=∠C﹣∠B
B.a(chǎn):b:c=2:3:4
C.a(chǎn)2=b2﹣c2
D.a(chǎn)=,b=,c=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糧店出售的三種品牌的面粉袋上,分別標(biāo)有質(zhì)量為(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字樣,從中任意拿出兩袋,它們的質(zhì)量最多相差 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.
(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com