23、已知△ABC,分別以AB、BC、CA為邊向形外作等邊三角形ABD、等邊三角形BCE、等邊三角形ACF.
(1)如圖,當△ABC是等邊三角形時,請你寫出滿足圖中條件,四個成立的結論;
(2)如圖,當△ABC中只有∠ACB=60°時,請你證明S△ABC與S△ABD的和等于S△BCE與S△ACF的和.
分析:(1)由等邊三角形的性質可寫出結論.
(2)要證明以上結論,需創(chuàng)造一些條件,首先可從△ABC中分出一部分使得與△ACF的面積相等,則過A作AM∥FC交BC于M,連接DM、EM,就可創(chuàng)造出這樣的條件,然后再證其它的面積也相等即可.
解答:解:(1)DE=EF,DF=EF,∠D=∠E=∠F,A、B、C分別為DF、DE、EF的中點.
(2)過A作AM∥FC交BC于M,連接DM、EM,
∵∠ACB=60°,∠CAF=60°,
∴∠ACB=∠CAF.
∴AF∥MC.
∴四邊形AMCF是平行四邊形.
又∵FA=FC,
∴四邊形AMCF是菱形.
∴AC=CM=AM,且∠MAC=60°.
∵在△BAC與△EMC中,
CA=CM,∠ACB=∠MCE,CB=CE,
∴△BAC≌△EMC.
∴DM=BC.
∴DM=EB,DB=EM.
∴四邊形DBEM是平行四邊形.
∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF
即S△ABC+S△ABD=S△BCE+S△ACF
點評:本題主要考查等邊三角形的性質及平行四邊的判定和全等三角形的判定,難度很大,有利于培養(yǎng)同學們鉆研和探索問題的精神.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、已知△ABC,分別以AB,AC為邊,向形外作等邊三角形ABD和ACE,連接BE,DC,其中,則△ADC≌△ABE的根據(jù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知△ABC,分別以BC、AC為邊向形外作正方形BDEC,正方形ACFG,過C點的直線MN垂直于AB于N,交EF于M,
(1)當∠ACB=90°時,試證明:①EF=AB;②M為EF的中點;

(2)當∠ACB為銳角或鈍角時,①EF與AB的數(shù)量關系為
當∠ACB為銳角時,EF>AB,當∠ACB為鈍角時,EF<AB
(分情況說明);
②M還是EF的中點嗎?請說明理由.(選擇當∠ACB為銳角或鈍角時的一種情況來說明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•博野縣模擬)閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于
2
2

請你嘗試用平移、旋轉、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•南開區(qū)一模)閱讀下面材料:小明遇到這樣一個問題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構成一個三角形,在計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
(I)請你回答:圖2中△BCE的面積等于
2
2

(II)請你嘗試用平移、旋轉、翻折的方法,解決下列問題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

同步練習冊答案