【題目】如圖,在直角坐標系中,⊙A的圓心坐標為(,a)半徑為,函數(shù)y=2x﹣2的圖象被⊙A截得的弦長為2,則a的值為_____.
【答案】4﹣2
【解析】
作AH⊥x軸于H,交CB于D,作AE⊥CB于E,連結AC,由題意得出,把代入y=2x-2得,得出D點坐標為,得出HD=,由垂徑定理得出CE=BE=,由勾股定理得出,求出直線y=2x-2與坐標軸的交點坐標,得出OG=2,OF=1,由平行線的性質(zhì)得出∠ADE=∠HDF=∠OGF,求出DE=2AE=4,由勾股定理得出,即可得出結果.
解:作AH⊥x軸于H,交CB于D,作AE⊥CB于E,連結AC,如圖,
∵⊙A的圓心坐標為(,a),
∴OH=,AH=a,
把x=代入y=2x﹣2得y=2﹣2,
∴D點坐標為(,2﹣2),
∴HD=2﹣2,
∵AE⊥CB,
∴CE=BE=,
在Rt△ACE中,AC=,
∴,
∵span>y=2x﹣2,
當x=0時,y=﹣2;當y=0時,x=1,
∴G(0,﹣2),F(1,0),
∴OG=2,OF=1,
∵AH∥y軸,
∴∠ADE=∠CDF=∠OGF,
∴tan∠ADE==tan∠OGF==,
∴DE=2AE=4,
∴AD===2,
∴a=AH=AD+HD=2+2﹣2=4﹣2,
故答案為:4﹣2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知菱形,,點是邊延長線上一點, 連接交延長線于點,連接交于點,連接交、于點、,設,.
(1)用含的代數(shù)式表示;
(2)求關于的函數(shù)解析式, 并寫出它的定義域;
(3)當與相似時, 求的值 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線OA:y=x的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A點,過A點作軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點(點B與點A不重合),且B點的橫坐標為1,在x軸上求一點P,使PA+PB最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖拋物線y=ax2+bx+與y軸交于點A,與x軸交于點B、點C.連接AB,以AB為邊向右作平行四邊形ABDE,點E落在拋物線上,點D落在x軸上,若拋物線的對稱軸恰好經(jīng)過點D,且∠ABD=60°,則這條拋物線的解析式為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點A為⊙0外一點,過A作⊙O的切線與⊙O相切于點P,連接PO并延長至圓上一點B連接AB交⊙O于點C,連接OA交⊙O于點D連接DP且∠OAP=∠DPA。
(1)求證:PO=PD
(2)若AC=,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水產(chǎn)經(jīng)銷商從批發(fā)市場以30元每千克的價格收購了1000千克的蝦,了解到市場價在一個月內(nèi)會以每天0.5元每千克的價格上漲,經(jīng)銷商打算先在塘里放養(yǎng)幾天后再出售(但不超過一個月).假設放養(yǎng)期間蝦的個體質(zhì)量保持不變,但每天有10千克的蝦死去.死去的蝦會在當天以20元每千克的價格售出.
(1)若放養(yǎng)10天后出售,則活蝦的市場價為每千克 元.
(2)若放養(yǎng)x天后將活蝦一次性售出,這1000千克的蝦總共獲得的銷售額為36000元,求x的值.
(3)若放養(yǎng)期間,每天會有各種其他的各種費用支出為a元,經(jīng)銷商在放養(yǎng)x天后全部售出,當20≤x≤30時,經(jīng)銷商日獲利的最大值為1800元,則a的值為 (日獲利=日銷售總額﹣收購成本﹣其他費用)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.
(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;
(2)求乙所拿的兩袋垃圾不同類的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A 、A 、A…在射線ON上,點B、B、B…在射線OM上,△ABA、△ABA、△ABA …均為等邊三角形,若OA=1,則△A BA 的邊長為____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列圖形:
它們是按一定規(guī)律排列的,依照此規(guī)律,第5個圖形中的五角星的個數(shù)為___,第n個圖形中的五角星(n為正整數(shù))個數(shù)為____(用含n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com