【題目】如圖,在等腰直角△ABC中,∠C=90°,點(diǎn)O是AB的中點(diǎn),邊AC的長(zhǎng)為,將一塊邊長(zhǎng)足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)O旋轉(zhuǎn),始終保持三角板的一條直角邊與 AC相交,交點(diǎn)為點(diǎn)D,另一條直角邊與BC相交,交點(diǎn)為點(diǎn)E.證明:等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線(xiàn)段CD與CE長(zhǎng)度之和為定值.
【答案】見(jiàn)解析.
【解析】
連接OC,證明△OCD≌△OBE,根據(jù)全等三角形的性質(zhì)得到CD=BE,證明結(jié)論.
連接OC.
∵AC=BC,AO=BO,∠ACB=90°.
∴∠ACO=∠BCO=∠ACB=45°,OC⊥AB.
∠A=∠B=45°.
∴OC=OB.
∵∠BOE+∠EOD+∠AOD=180°,∠EOD=90°.
∴∠BOE+∠AOD=90°.
又∵∠COD+∠AOD=90°,
∴∠BOE=∠COD.
又∠OCD=∠B=45°,
∴△OCD≌△OBE.
∴CD=BE.
∴CD+CE=BE+CE=BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“為了安全,請(qǐng)勿超速”,如圖所示是一條已經(jīng)建成并通車(chē)的公路,且該公路的某直線(xiàn)路段MN上限速17m/s,為了檢測(cè)來(lái)往車(chē)輛是否超速,交警在MN旁設(shè)立了觀測(cè)點(diǎn)C.若某次從觀測(cè)點(diǎn)C測(cè)得一汽車(chē)從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200m.
(1)求觀測(cè)點(diǎn)C到公路MN的距離;
(2)請(qǐng)你判斷該汽車(chē)是否超速?(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾,乙車(chē)所運(yùn)趟數(shù)是甲車(chē)的2倍,且乙車(chē)每趟運(yùn)費(fèi)比甲車(chē)少200元.
(1)求甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?
(2)若單獨(dú)租用一臺(tái)車(chē),租用哪臺(tái)車(chē)合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】歷史上對(duì)勾股定理的一種證法采用了如圖所示圖形,其中兩個(gè)全等的直角三角形邊AE,EB在一條直線(xiàn)上.證明中用到的面積相等關(guān)系是 ( )
A. S△EDA=S△CEB
B. S△EDA +S△CEB=S△CDB
C. S四邊形CDAE= S四邊形CDEB
D. S△EDA+S△CDE+S△CEB= S四邊形ABCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給下列證明過(guò)程填寫(xiě)理由.
如圖,CD⊥AB于D,點(diǎn)F是BC上任意一點(diǎn),EF⊥AB于E,∠1=∠2,求證:∠ACB=∠3.
請(qǐng)閱讀下面解答過(guò)程,并補(bǔ)全所有內(nèi)容.
解:∵CD⊥AB,EF⊥AB(已知)
∴∠BEF=∠BDC=90°( )
∴EF∥DC( )
∴∠2=________( )
又∵∠2=∠1(已知)
∴∠1=_______(等量代換)
∴DG∥BC( )
∴∠3=________( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)P是平行四邊形ABCD對(duì)角線(xiàn)AC、BD的交點(diǎn),若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4則S1、S2、S3、S4的關(guān)系為S1=S2=S3=S4.請(qǐng)你說(shuō)明理由;
(2)變式1:如圖2,點(diǎn)P是平行四邊形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫(xiě)出S1、S2、S3、S4的關(guān)系式;
(3)變式2:如圖3,點(diǎn)P是四邊形ABCD對(duì)角線(xiàn)AC、BD的交點(diǎn)若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫(xiě)出S1、S2、S3、S4的關(guān)系式.請(qǐng)你說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com