【題目】某中學(xué)為豐富綜合實(shí)踐活動,開設(shè)了四個實(shí)驗(yàn)室如下:A.物理;B.化學(xué);C.信息;D.生物.為了解學(xué)生最喜歡哪個實(shí)驗(yàn)室,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,每位被調(diào)查的學(xué)生都選擇了一個自己最喜歡的實(shí)驗(yàn)室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖回答下列問題
(1)求這次被調(diào)查的學(xué)生人數(shù).
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求出扇形統(tǒng)計(jì)圖中B對應(yīng)的圓心角的度數(shù).
【答案】(1)這次被調(diào)查的學(xué)生人數(shù)為500人;(2)見解析;(3)扇形統(tǒng)計(jì)圖中B對應(yīng)的圓心角的度數(shù)為54°.
【解析】
(1)根據(jù)項(xiàng)目C的人數(shù)及其所占百分比即可求得被調(diào)查的人數(shù);
(2)總?cè)藬?shù)減去B、C、D的人數(shù)和求出A的人數(shù),補(bǔ)全圖形即可;
(3)用360°乘以B項(xiàng)目人數(shù)所占百分比即可.
解:(1)140÷28%=500(人).
∴這次被調(diào)查的學(xué)生人數(shù)為500人.
(2)A項(xiàng)目的人數(shù)為500﹣(75+140+245)=40(人),
補(bǔ)全圖形如下:
(3)×360°=54°.
∴扇形統(tǒng)計(jì)圖中B對應(yīng)的圓心角的度數(shù)為54°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,在△ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖形;
(2)若∠PAC=24°,求∠AEB的度數(shù);
(3)連結(jié)CE,若AE=,CE=1,求BE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在中,,,是的平分線,交于點(diǎn),是的中點(diǎn),連接并延長交的延長線于點(diǎn),連接.
求證:(1);
(2)為等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)校園內(nèi)有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,學(xué)校計(jì)劃在中間留一塊邊長為(a+b)米的正方形地塊修建一座雕像,然后將陰影部分進(jìn)行綠化.
(1)求綠化的面積.(用含a、b的代數(shù)式表示)
(2)當(dāng)a=2,b=4時,求綠化的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多多班長統(tǒng)計(jì)去年1~8月“書香校園”活動中全班同學(xué)的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計(jì)圖,下列說法正確的是( )
A.極差是47B.眾數(shù)是42
C.中位數(shù)是58D.每月閱讀數(shù)量超過40的有4個月
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形中,,,AD為底邊BC上的高,動點(diǎn)從點(diǎn)D出發(fā),沿DA方向勻速運(yùn)動,速度為,運(yùn)動到點(diǎn)停止,設(shè)運(yùn)動時間為,連接BP.(0≤t≤8)
(1)求AD的長;
(2)設(shè)△APB的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使得S△APB:S△ABC=1:3,若存在,求出的值;若不存在,說明理由.
(4)是否存在某一時刻,使得點(diǎn)P在線段AB的垂直平分線上,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線: 與拋物線相交于點(diǎn)A(,7).
(1)求m,n的值;
(2)過點(diǎn)A作AB∥x軸交拋物線于點(diǎn)B,設(shè)拋物線與x軸交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),求△BCD的面積;
(3)點(diǎn)E(t,0)為x軸上一個動點(diǎn),過點(diǎn)E作平行于y軸的直線與直線和拋物線分別交于點(diǎn)P、Q.當(dāng)點(diǎn)P在點(diǎn)Q上方時,求線段PQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道定理“直角三角形斜邊上的中線等于斜邊的一半”,這個定理的逆命題也是真命題.
(1)請你寫出這個定理的逆命題是________;
(2)下面我們來證明這個逆命題:如圖,CD是△ABC的中線,CD=AB.求證:△ABC為直角三角形.請你寫出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com