【題目】如圖,一次函數(shù)y=kx+b(k≠0)和反比例函數(shù)y=(m≠0)分別交于點(diǎn)A(4,1),B(﹣1,a)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出kx+b>的x的取值范圍.
【答案】(1)y=;y=x-3;(2)S△AOB=;(3)x>4或-1<x<0.
【解析】
(1)把點(diǎn)A(4,1)與點(diǎn)B(-1,n)代入反比例函數(shù)y=得到m=4,即反比例函數(shù)的解析式為y=,把點(diǎn)A(4,1)與點(diǎn)B(-1,-4)代入一次函數(shù)y=kx+b,得到,解得:得到一次函數(shù)解析式為y=x-3;(2)根據(jù)三角形的面積公式即可得到結(jié)論;(3)由圖象即可可得結(jié)論.
(1)解:∵點(diǎn)A(4,1)與點(diǎn)B(-1,n)在反比例函數(shù)y=(m≠0)圖象上,
∴m=4,即反比例函數(shù)的解析式為y=,
當(dāng)x=1時(shí),n=-4,即B(-1,-4),
∵點(diǎn)A(4,1)與點(diǎn)B(-1,-4)在一次函數(shù)y=kx+b(k≠0)圖象上,
∴,解得:
∴一次函數(shù)解析式為y=x-3;
(2)解:對(duì)于y=x-3,當(dāng)y=0時(shí),x=3,
∴C(3,0)
∴S△AOB=S△AOC+S△BOC=;
(3)解:由圖象可得,當(dāng)-1<x<0或x>4時(shí),一次函數(shù)的值大于反例函數(shù)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,∠BAC=9 0°,AB=3,AC=4,點(diǎn) D 是 BC 的中點(diǎn),將△ABD 沿 AD 翻折得到△AED,連 CE,則線段 CE 的長(zhǎng)等于( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN.
(1)在圖1中,若∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)由傳感器A控制的燈,要裝在門上方離地面4.5m的墻上,任何東西只要移至該燈5m及5m內(nèi),燈就會(huì)自動(dòng)發(fā)光,小明身高1.5m,他走到離墻_______的地方燈剛好發(fā)光.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段,是直線上一動(dòng)點(diǎn),點(diǎn),分別為,的中點(diǎn),對(duì)下列各值:①線段的長(zhǎng);②的周長(zhǎng);③的面積;④直線,之間的距離;⑤的大。渲胁粫(huì)隨點(diǎn)的移動(dòng)而改變的是_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)B的坐標(biāo)為(6,8),動(dòng)點(diǎn)D、E分別從點(diǎn)B、A同時(shí)出發(fā),沿射線BA運(yùn)動(dòng),點(diǎn)D、E的運(yùn)動(dòng)速度均為每秒2個(gè)單位,設(shè)D、E的運(yùn)動(dòng)時(shí)間為t秒.連接OD、CE交于點(diǎn)F.
(1)如圖1,求點(diǎn)F的縱坐標(biāo);
(2)若點(diǎn)G為OA的中點(diǎn),在點(diǎn)D、E運(yùn)動(dòng)過程中,設(shè)△GEF的面積為y,求y與t的關(guān)系式;
(3)在(2)的條件下,連接BG,線段BG、OD交于點(diǎn)K,若,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以D、E、K、M為頂點(diǎn)的四邊形為平行四邊形,如果存在,請(qǐng)求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來(lái)越多的人喜歡騎自行車出行.某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com