如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個(gè)單位長(zhǎng)度;
(2)△AOC與△BOD關(guān)于直線對(duì)稱,則對(duì)稱軸是 ;
(3)△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)可以得到△DOB,則旋轉(zhuǎn)角度是 度,在此旋轉(zhuǎn)過程中,△AOC掃過的圖形的面積是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,P是邊長(zhǎng)為1的正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn)(P與A、C不重合),點(diǎn)E在射線BC上,且PE=PB. 設(shè)AP=x , △PBE的面積為y. 則下列圖象中,能表示與的函數(shù)關(guān)系的圖象大致是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點(diǎn)C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點(diǎn)D.
(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點(diǎn),AB=10 ,tan∠CAD=.
① 求拋物線的解析式;
② 判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點(diǎn)P,使四邊形PBCA是直角梯形.若存在,直接寫出點(diǎn)P的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.
解:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是
A.- B.- C.π- D.π-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,將兩個(gè)完全相同的三角形紙片和重合放置,其中
.
(1)操作發(fā)現(xiàn)
如圖2,固定,使繞點(diǎn)順時(shí)針旋轉(zhuǎn).當(dāng)點(diǎn)恰好落在邊上時(shí),填空:
圖1 圖2
① 線段與的位置關(guān)系是 ;
② 設(shè)的面積為,的面積為,則與的數(shù)量關(guān)系是 ,證明你的結(jié)論;
(2)猜想論證
當(dāng)繞點(diǎn)旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中與的數(shù)量關(guān)系仍然成立,并嘗試分別作出了和中BC,CE邊上的高,請(qǐng)你證明小明的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成的形式;
(2)求出該二次函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時(shí),y<0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com