【題目】如圖,將的邊延長(zhǎng)到點(diǎn),使,交邊于點(diǎn).

求證:

,求證:四邊形是矩形

【答案】()證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得AD//BC,AD=BC,繼而由AD=AF,可得四邊形AFBC是平行四邊形,根據(jù)平行四邊形的對(duì)角線互相平分即可得結(jié)論;

(2)由四邊形AFBC是平行四邊形,可得CE=FE,AE=EB,由DC//AB可得∠BAF=D,繼而由∠BEF=2D以及三角形外角的性質(zhì)可得∠EAF=AFE,由此得EA=EF,進(jìn)而得出AB=CF,根據(jù)對(duì)角線相等的平行四邊形是矩形即可得結(jié)論.

(1)四邊形是平行四邊形,

,

,

四邊形是平行四邊形,

;

,

四邊形是平行四邊形,

四邊形是平行四邊形,

DC//AB,

,

,

,

,

,

平行四邊形是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點(diǎn),過(guò)點(diǎn)A的⊙FAB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為 ( )

A. 3 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=―ax2+2ax+c(a>0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,過(guò)A的直線y=kx+2k(k≠0)與這個(gè)二次函數(shù)圖象交于另一點(diǎn)F,與其對(duì)稱軸交于點(diǎn)E,與y軸交于點(diǎn)D,且DE=EF

(1)求A點(diǎn)坐標(biāo);

(2)若△BDF的面積為12,求此二次函數(shù)的表達(dá)式;

(3)設(shè)二次函數(shù)圖象頂點(diǎn)為P,連接PF,PC,若∠CPF=2∠DAB,求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB,BC分別是⊙O的直徑和弦,點(diǎn)D上一點(diǎn),弦DE交⊙O于點(diǎn)E,交AB于點(diǎn)F,交BC于點(diǎn)G,過(guò)點(diǎn)C的切線交ED的延長(zhǎng)線于H,且HC=HG,連接BH,交⊙O于點(diǎn)M,連接MD,ME

求證:

1DEAB

2HMD=MHE+MEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線AB上任一點(diǎn),射線OD和射線OE分別平分∠AOC和∠BOC.

(1)填空:與∠AOE互補(bǔ)的角有   

(2)若∠COD=30°,求∠DOE的度數(shù);

(3)當(dāng)∠AOD=α°時(shí),請(qǐng)直接寫(xiě)出∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是射線上一點(diǎn),過(guò)軸于點(diǎn),以為邊在其右側(cè)作正方形,過(guò)的雙曲線邊于點(diǎn),則的值為  

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)(3分)如圖(1),正方形AEGH的頂點(diǎn)E、H在正方形ABCD的邊上,直接寫(xiě)出HDGCEB的結(jié)果(不必寫(xiě)計(jì)算過(guò)程);

(2)(3分)將圖(1)中的正方形AEGH繞點(diǎn)A旋轉(zhuǎn)一定角度,如圖(2),求HDGCEB;

(3)(2分)把圖(2)中的正方形都換成矩形,如圖(3),且已知DAAB=HAAE=m: n,此時(shí)HDGCEB的值與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫(xiě)出變化后的結(jié)果(不必寫(xiě)計(jì)算過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案