【題目】平面上,將邊長(zhǎng)相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2=

【答案】24°
【解析】解:正三角形的每個(gè)內(nèi)角是:

180°÷3=60°,

正方形的每個(gè)內(nèi)角是:

360°÷4=90°,

正五邊形的每個(gè)內(nèi)角是:

(5﹣2)×180°÷5

=3×180°÷5

=540°÷5

=108°,

正六邊形的每個(gè)內(nèi)角是:

(6﹣2)×180°÷6

=4×180°÷6

=720°÷6

=120°,

則∠3+∠1﹣∠2

=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)

=30°+12°﹣18°

=24°.

所以答案是:24°.

【考點(diǎn)精析】掌握多邊形內(nèi)角與外角和正多邊形和圓是解答本題的根本,需要知道多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°;圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角;圓的外切四邊形的兩組對(duì)邊的和相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空,完成下列說(shuō)理過(guò)程

如圖,點(diǎn)A,O,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC

1)求∠DOE的度數(shù);

2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因?yàn)?/span>OD是∠AOC的平分線,

所以∠COD =AOC

因?yàn)?/span>OE是∠BOC 的平分線,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,平分,平分

(1),則的度數(shù)為______

(2),直線經(jīng)過(guò)點(diǎn)

①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);

②如圖3,若繞點(diǎn)旋轉(zhuǎn),分別交線段于點(diǎn),試問(wèn)在旋轉(zhuǎn)過(guò)程中的度數(shù)是否會(huì)發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請(qǐng)說(shuō)明理由:

③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點(diǎn),與的延長(zhǎng)線交于點(diǎn),請(qǐng)直接寫出的關(guān)系(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線m與直線n垂直相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B 在直線n上運(yùn)動(dòng),AC、BC分別是∠BAO和∠ABO的角平分線.

1)求∠ACB的大小;

2)如圖2,若BDAOB的外角∠OBE的角平分線,BDAC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值;

3)如圖3,過(guò)C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CFOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD滿足AB:BC=1: ,把矩形ABCD對(duì)折,使CD與AB重合,得折痕EF,把矩形ABFE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到矩形A′BF′E′,連結(jié)E′B,交A′F′于點(diǎn)M,連結(jié)AC,交EF于點(diǎn)N,連結(jié)AM,MN,若矩形ABCD面積為8,則△AMN的面積為( )

A.4
B.4
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的位置如圖所示,將ABC水平向左平移3個(gè)單位,再豎直向下平移2個(gè)單位。

1)讀出ABC的三個(gè)頂點(diǎn)坐標(biāo);

2)請(qǐng)畫出平移后的ABC,并直接寫出點(diǎn)A/、B、C的坐標(biāo);

3)求平移以后的圖形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是菱形,在平面直角坐標(biāo)系中的位置如圖,邊AD經(jīng)過(guò)原點(diǎn)O,已知A(0,﹣3),B(4,0),反比例函數(shù)圖象經(jīng)過(guò)點(diǎn)C,直線AC交雙曲線另一支于點(diǎn)E,連接DE,CD,設(shè)反比例函數(shù)解析式為y1= ,直線AC解析式為y2=ax+b.

(1)求反比例函數(shù)解析式;
(2)當(dāng)y1<y2時(shí),求x的取值范圍;
(3)求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)林業(yè)局要考察一種樹(shù)苗移植的成活率,對(duì)該地區(qū)這種樹(shù)苗移植成活的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息解決下列問(wèn)題:

(1)這種樹(shù)苗成活的頻率穩(wěn)定在___________,成活的概率估計(jì)值為___________.

(2)該地區(qū)已經(jīng)移植這種樹(shù)苗5萬(wàn)棵.

①估計(jì)這種樹(shù)苗成活___________萬(wàn)棵.

②如果該地區(qū)計(jì)劃成活18萬(wàn)棵這種樹(shù)苗,那么還需移植這種樹(shù)苗約多少萬(wàn)棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,點(diǎn)EF、GH分別是BC、AD、BDAC的中點(diǎn),猜想四邊形EHFG的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案