【題目】如圖,AB=AC,AD=AEDE=BC,且BAD=∠CAE

1)求證:ABE≌△ACD;

2)判斷四邊形BCDE的形狀,并說明理由.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)利用SAS證得兩個(gè)三角形全等即可;

2)先證明四邊形BCED是平行四邊形,然后求出∠EBC=DCB=90°,可得到四邊形BCDE是矩形.

1)證明:∵∠BAD=CAE,

∴∠EAB=DAC,

ABEACD

AB=AC,∠EAB=DAC,AE=AD

∴△ABE≌△ACDSAS);

2)解:結(jié)論:四邊形BCDE是矩形.

理由:∵△ABE≌△ACD,

BE=CD

DE=BC,

∴四邊形BCDE為平行四邊形.

AB=AC

∴∠ABC=ACB

∵△ABE≌△ACD,

∴∠ABE=ACD,

∴∠EBC=DCB

∵四邊形BCDE為平行四邊形,

EBDC,

∵∠EBC+DCB=180°,

∴∠EBC=DCB=90°

∴四邊形BCDE是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線ACBD相交于點(diǎn)O,BD2ADE、F、G分別是OCOD、AB的中點(diǎn),下列結(jié)論:①BEAC;②EGEF;EFG≌△GBE④EA平分∠GEF;四邊形BEFG是菱形.其中正確的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)、在直線上,點(diǎn)、、、在直線上,若,從如圖所示的位置出發(fā),沿直線向右勻速運(yùn)動(dòng),直到重合.運(yùn)動(dòng)過程中與矩形重合部分的面積隨時(shí)間變化的圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線x軸于A(-20),B3,0)兩點(diǎn),交y軸于點(diǎn)C0,6).

1)寫出ab,c的值;

2)連接BC,點(diǎn)P為第一象限拋物線上一點(diǎn),過點(diǎn)AADx軸,過點(diǎn)PPDBC于交直線AD于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t,AD長為h

①求ht的函數(shù)關(guān)系式和h的最大值(請求出自變量t的取值范圍);

②過第二象限點(diǎn)DDEABBC于點(diǎn)E,若DP=CE,時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6ADAB=31.則點(diǎn)B的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中所給信息解答下列問題:

1)本次調(diào)查的學(xué)生共有多少人?

2)計(jì)算并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有學(xué)生2000人,估計(jì)該校約有多少人選修樂器課程?

查看答案和解析>>

同步練習(xí)冊答案