【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線的對(duì)稱軸是且經(jīng)過(guò)、兩點(diǎn),與軸的另一交點(diǎn)為點(diǎn),連結(jié).
(1)填空:點(diǎn)、點(diǎn)和點(diǎn)的坐標(biāo)分別為________,________,________;
(2)求證:;
(3)求拋物線解析式;
(4)若點(diǎn)為直線上方的拋物線上的一點(diǎn),連結(jié),,求面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).
【答案】(1);(2)證明見解析;(3)時(shí),的面積有最大值是;;
【解析】
(1)先求的直線y=x+2與x軸交點(diǎn)的坐標(biāo),然后利用拋物線的對(duì)稱性可求得點(diǎn)B的坐標(biāo);
(2)由點(diǎn)的坐標(biāo)得出OA=4,OB=1,OC=2,證出 ,再由∠AOC=∠COB=90°,即可得出△AOC∽△COB;
(3)設(shè)拋物線的解析式為y=y=a(x+4)(x-1),然后將點(diǎn)C的坐標(biāo)代入即可求得a的值;
(4)設(shè)點(diǎn)P、Q的橫坐標(biāo)為m,分別求得點(diǎn)P、Q的縱坐標(biāo),從而可得到線段PQ=-m2-2m,然后利用三角形的面積公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面積的最大值以及此時(shí)m的值,從而可求得點(diǎn)P的坐標(biāo);
(1)y=x+2,
當(dāng)x=0時(shí),y=2,當(dāng)y=0時(shí),x=-4,
∴C(0,2),A(-4,0),
∵拋物線y=ax2+bx+c的對(duì)稱軸是x=-,
∴點(diǎn)B的坐標(biāo)為1,0);
故答案是:(-4,0),(1,0),(0,2).
(2)∵,,,
∴,,,
∴,,
∴,
又∵,
∴;
(3)∵拋物線過(guò),,
∴可設(shè)拋物線解析式為,
又∵拋物線過(guò)點(diǎn),
∴
∴,
∴.
(4)設(shè).
過(guò)點(diǎn)作軸交于點(diǎn),
∴,
∴
,
∵,
,
∴當(dāng)時(shí),的面積有最大值是,
此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲乙兩地之間的距離為810米,小明和小天分別從甲乙兩地出發(fā),勻速相向而行,已知小明先出發(fā)1分鐘后,小天再出發(fā),兩人在甲乙之間的丙地相遇,此時(shí),小明發(fā)現(xiàn)有小學(xué)同學(xué)也在丙地,于是聊了一會(huì)兒,隨后以原來(lái)速度的倍返回甲地,小天相遇后繼續(xù)以原速向甲地前行,到達(dá)甲地后立即原速返回,直至再次與小明相遇.已知在整個(gè)過(guò)程中,小明、小天兩人之間的距離(米與小明出發(fā)的時(shí)間(分鐘)之間的關(guān)系如圖所示,則在第二次相遇時(shí)兩人距離乙地______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)函數(shù)y=+x的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可): .
(5)小明發(fā)現(xiàn),①該函數(shù)的圖象關(guān)于點(diǎn)( , )成中心對(duì)稱;
②該函數(shù)的圖象與一條垂直于x軸的直線無(wú)交點(diǎn),則這條直線為 ;
③直線y=m與該函數(shù)的圖象無(wú)交點(diǎn),則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若某同學(xué)在一次綜合性測(cè)試中,語(yǔ)文、數(shù)學(xué)、英語(yǔ)、科學(xué)、社會(huì)5門學(xué)科的名次在其所在班級(jí)里都不超過(guò)3(記第一名為1,第二名為2,第三名為3,以此類推且沒有并列名次情況),則稱該同學(xué)為超級(jí)學(xué)霸.現(xiàn)根據(jù)不同班級(jí)的甲、乙、丙、丁四位同學(xué)對(duì)一次綜合性測(cè)試名次數(shù)據(jù)的描述,一定可以推斷是超級(jí)學(xué)霸的是( 。
A. 甲同學(xué):平均數(shù)為2,中位數(shù)為2B. 乙同學(xué):中位數(shù)是2,唯一的眾數(shù)為2
C. 丙同學(xué):平均數(shù)是2,標(biāo)準(zhǔn)差為2D. 丁同學(xué):平均數(shù)為2,唯一的眾數(shù)為2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小紅用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).
(1)求BF的長(zhǎng);(2)求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)價(jià)為每件40元的某商品,售價(jià)為每件50元時(shí),每星期可賣出500件,市場(chǎng)調(diào)查反映:如果每件的售價(jià)每降價(jià)1元,每星期可多賣出100件,但售價(jià)不能低于每件42元,且每星期至少要銷售800件.設(shè)每件降價(jià)x元 (x為正整數(shù)),每星期的利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)若某星期的利潤(rùn)為5600元,此利潤(rùn)是否是該星期的最大利潤(rùn)?說(shuō)明理由.
(3)直接寫出售價(jià)為多少時(shí),每星期的利潤(rùn)不低于5000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(1,m),B (n,2)兩點(diǎn)
(1)求一次函數(shù)的解析式;
(2)直接寫出不等式≥kx+b的解集;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,∠B=∠C,D,E分別是線段BC,AC上的一點(diǎn),且AD=AE,
(1)如圖1,若∠BAC=90°,D是BC中點(diǎn),則∠2的度數(shù)為_____;
(2)借助圖2探究并直接寫出∠1和∠2的數(shù)量關(guān)系_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓O中,∠ACB=∠BDC=60°,
(1)求∠BAC的度數(shù);
(2)連接AD,求證:DB=AD+DC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com