已知雙曲線y=
kx
經(jīng)過點(diǎn)(-1,3),如果A(2,b1),B(3,b2)兩點(diǎn)在該雙曲線上,那么b1
 
b2.(用“>”或“<”連接)
分析:只需把所給點(diǎn)的橫縱坐標(biāo)相乘可以得到k=-3,A(2,b1),B(3,b2)兩點(diǎn)在該雙曲線上,所以2b1=-3,3b2=-3,可得到答案.
解答:解:∵雙曲線y=
k
x
經(jīng)過點(diǎn)(-1,3),
∴k=xy=-1×3=-3,
∵A(2,b1),B(3,b2)兩點(diǎn)在該雙曲線上,
∴2b1=-3,3b2=-3,
解得:b1=-
3
2
,b2=-1,
∴b1<b2,
故答案為:<.
點(diǎn)評(píng):本題主要考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,所有在反比例函數(shù)上的點(diǎn)的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知雙曲線y=
kx
經(jīng)過點(diǎn)(2,5),則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知雙曲線y=
kx
經(jīng)過點(diǎn)(1,-2),則k的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知雙曲線y=
kx
經(jīng)過點(diǎn)(1,-3),則k的值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知雙曲線y=
kx
經(jīng)過點(diǎn)(2,3),如果A(a1,b1),B(a2,b2)兩點(diǎn)在該雙曲線上,且a1<0<a2,
那么b1
b2

查看答案和解析>>

同步練習(xí)冊(cè)答案