【題目】如圖1,P為Rt△ABC所在平面內(nèi)任意一點(diǎn)(不在直線(xiàn)AC上),∠ACB=90°,M為AB邊中點(diǎn).操作:以PA、PC為鄰邊作平行四邊形PADC,連續(xù)PM并延長(zhǎng)到點(diǎn)E,使ME=PM,連接DE. 探究:

(1)請(qǐng)猜想與線(xiàn)段DE有關(guān)的三個(gè)結(jié)論;
(2)請(qǐng)你利用圖2,圖3選擇不同位置的點(diǎn)P按上述方法操作;
(3)經(jīng)歷(2)之后,如果你認(rèn)為你寫(xiě)的結(jié)論是正確的,請(qǐng)加以證明; 如果你認(rèn)為你寫(xiě)的結(jié)論是錯(cuò)誤的,請(qǐng)用圖2或圖3加以說(shuō)明;
(注意:錯(cuò)誤的結(jié)論,只要你用反例給予說(shuō)明也得分)
(4)若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖4操作,并寫(xiě)出與線(xiàn)段DE有關(guān)的結(jié)論(直接寫(xiě)答案).

【答案】
(1)解:DE∥BC,DE=BC,DE⊥AC
(2)解:如圖4,如圖5.


(3)解:方法一:

如圖6,

連接BE,

∵PM=ME,AM=MB,∠PMA=∠EMB,

∴△PMA≌△EMB.

∵PA=BE,∠MPA=∠MEB,

∴PA∥BE.

∵平行四邊形PADC,

∴PA∥DC,PA=DC.

∴BE∥DC,BE=DC,

∴四邊形DEBC是平行四邊形.

∴DE∥BC,DE=BC.

∵∠ACB=90°,

∴BC⊥AC,

∴DE⊥AC.

方法二:

如圖7,連接BE,PB,AE,

∵PM=ME,AM=MB,

∴四邊形PAEB是平行四邊形.

∴PA∥BE,PA=BE,

余下部分同方法一:

方法三:

如圖8,連接PD,交AC于N,連接MN,

∵平行四邊形PADC,

∴AN=NC,PN=ND.

∵AM=BM,AN=NC,

∴MN∥BC,MN= BC.

又∵PN=ND,PM=ME,

∴MN∥DE,MN= DE.

∴DE∥BC,DE=BC.

∵∠ACB=90°,

∴BC⊥AC.

∴DE⊥AC.


(4)解:如圖9,DE∥BC,DE=BC.


【解析】連接BE,根據(jù)邊角邊可證△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因?yàn)锽C⊥AC,所以DE也和AC垂直.以下幾種情況雖然圖象有所變化,但是證明方法一致.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線(xiàn)互相平分才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天早晨,張強(qiáng)從家跑步去體育鍛煉,同時(shí)媽媽從體育場(chǎng)晨練結(jié)束回家,途中兩人相遇,張強(qiáng)跑到體育場(chǎng)后發(fā)現(xiàn)要下雨,立即按原路返回,遇到媽媽后兩人一起回到家(張強(qiáng)和媽媽始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與張強(qiáng)出發(fā)的時(shí)間x(分)之間的函數(shù)圖象,根據(jù)圖象信息解答下列問(wèn)題:

(1)求張強(qiáng)返回時(shí)的速度;

(2)媽媽比按原速返回提前多少分鐘到家?

(3)請(qǐng)直接寫(xiě)出張強(qiáng)與媽媽何時(shí)相距1000米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算結(jié)果正確的是( )
A.a2+a3=a5
B.a2a3=a6
C.a3÷a2=a
D.(a23=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子有6個(gè)完全一樣的球,分別寫(xiě)著數(shù)字1、2、3、4、5、6,從中摸出一個(gè)記下球上的數(shù)字,然后放進(jìn)去,在摸一個(gè)球,則兩次摸出球上的數(shù)字之和為5的概率為__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,-3)(  )

A. 第一象限 B. 第二象限

C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為建設(shè)秀美龍江,某學(xué)校組織師生參加一年一度的植樹(shù)綠化工作,準(zhǔn)備租用7輛客車(chē),現(xiàn)有甲、乙兩種客車(chē),它們的載客量和租金如下表,設(shè)租用甲種客車(chē)x輛,租車(chē)總費(fèi)用為y元,

甲種客車(chē)

乙種客車(chē)

載客量/(人/輛)

60

40

租金/(元/輛)

360

300

(1)求出y(單位:元)與x(單位:輛)之間的函數(shù)關(guān)系式。

(2)若該校共有350名師生前往參加勞動(dòng),共有多少種租車(chē)方案?

(3)帶隊(duì)老師從學(xué)校預(yù)支租車(chē)費(fèi)用2400元,試問(wèn)預(yù)支的租車(chē)費(fèi)用是否可有結(jié)余?若有結(jié)余,最多可結(jié)余多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m>0)
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根且其中一根為定值.
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1 , x2(其中x1<x2).若y是關(guān)于m的函數(shù),且y=7x1﹣mx2 , 求這個(gè)函數(shù)的解析式;并求當(dāng)自變量m的取值范圍滿(mǎn)足什么條件時(shí),y≤3m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一元二次方程ax2+bx+c0中的a3,b0,c=﹣2,則這個(gè)一元二次方程是( 。

A.3x220B.3x2+20C.3x2+x0D.3x2x0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】65日是世界環(huán)境日,為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某市第一中學(xué)舉行了環(huán)保知識(shí)競(jìng)賽,參賽人數(shù)1000人,為了了解本次競(jìng)賽的成績(jī)情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(jī)(滿(mǎn)分為100分,得分取整數(shù))進(jìn)行統(tǒng)計(jì),并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:

(1)直接寫(xiě)出a的值,并補(bǔ)全頻數(shù)分布直方圖.

分組

頻數(shù)

頻率

49.5~59.5

0.08

59.5~69.5

0.12

69.5~79.5

20

79.5~89.5

32

89.5~100.5

a

(2)若成績(jī)?cè)?/span>80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績(jī)?yōu)閮?yōu)秀的約為多少人?

(3)若這組被抽查的學(xué)生成績(jī)的中位數(shù)是80分,請(qǐng)直接寫(xiě)出被抽查的學(xué)生中得分為80分的至少有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案