【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
①根據(jù)角平分線的性質(zhì)得出結(jié)論:DE=CD;
②證明△ACD≌△AED,得AD平分∠CDE;
③由四邊形的內(nèi)角和為360°得∠CDE+∠BAC=180°,再由平角的定義可得結(jié)論是正確的;
④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出結(jié)論是正確的.
①∵∠C=90°,AD平分∠BAC,DE⊥AB,
∴DE=CD;
所以此選項結(jié)論正確;
②∵DE=CD,AD=AD,∠ACD=∠AED=90°,
∴△ACD≌△AED,
∴∠ADC=∠ADE,
∴AD平分∠CDE,
所以此選項結(jié)論正確;
③∵∠ACD=∠AED=90°,
∴∠CDE+∠BAC=360°-90°-90°=180°,
∵∠BDE+∠CDE=180°,
∴∠BAC=∠BDE,
所以此選項結(jié)論正確;
④∵△ACD≌△AED,
∴AC=AE,
∵AB=AE+BE,
∴BE+AC=AB,
所以此選項結(jié)論正確;
本題正確的結(jié)論有4個,故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片 ABCD 折疊,AE、EF 為折痕,點 C 落在 AD 邊上的 G 處, 并且點 B 落在 EG 邊的 H 處,若 AB=,∠BAE=30°,則 BC 邊的長為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā), 勻速運動. 快車離乙地的路程y1(km) 與行駛的時間x(h) 之間的函數(shù)關(guān)系, 如圖中線段AB 所示;慢車離乙地的路程y2(km) 與行駛的時間x(h)之間的函數(shù)關(guān)系, 如圖中線段OC 所示。根據(jù)圖象下列問題:
(1) 甲、乙兩地之間的距離為__________km ;
(2) 線段AB 的解析式為_______________________;線段OC 的解析式為_________________________;
(3) 設(shè)快、慢車之間的距離為y(km), 求y 與慢車行駛時間x(h) 的函數(shù)關(guān)系式, 并畫出函數(shù)的圖象。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC滿足∠BCA=90°,AC=BC=,點A、C分別在x軸和y軸上,當點A從原點開始沿x軸的正方向運動時,則點C始終在y軸上運動,點B始終在第一象限運動.
(1)當AB∥y軸時,求B點坐標.
(2)隨著A、C的運動,當點B落在直線y=3x上時,求此時A點的坐標.
(3)在(2)的條件下,在y軸上是否存在點D,使以O、A、B、D為頂點的四邊形面積是4?如果存在,請直接寫出點D的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CE是⊙O的直徑,D為⊙O上一點,過點D作⊙O的切線,交CE延長線于點A,連接DE,過點O作OB∥ED,交AD的延長線于點B,連接BC.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,DE為正方形的外角∠ADF的角平分線,點G在線段AD上,過點G作PG⊥DE于點P,連接CP,過點D作DQ⊥PC于點Q,交射線PG于點H.
(1)如圖1,若點G與點A重合.
①依題意補全圖1;
②判斷DH與PC的數(shù)量關(guān)系并加以證明;
(2)如圖2,若點H恰好在線段AB上,正方形ABCD的邊長為1,請寫出求DP長的思路(可以不寫出計算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)請判斷BD、CE有何大小、位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師給愛好學習的小兵和小鵬提出這樣一個問題:如圖1,在△ABC中,AB=AC點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小兵的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小鵬的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,先證△GPC≌△ECP,可得:PE=CG,而PD=GF,則PD+PE=CF.
請運用上述中所證明的結(jié)論和證明思路完成下列兩題:
(1)如圖3,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值;
(2)如圖4,P是邊長為6的等邊三角形ABC內(nèi)任一點,且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com