如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

【答案】分析:(1)利用h=2.6將(0,2)點(diǎn),代入解析式求出即可;
(2)利用當(dāng)x=9時,y=-(x-6)2+2.6=2.45,當(dāng)y=0時,,分別得出即可;
(3)根據(jù)當(dāng)球正好過點(diǎn)(18,0)時,y=a(x-6)2+h還過點(diǎn)(0,2)點(diǎn),以及當(dāng)球剛能過網(wǎng),此時函數(shù)解析式過(9,2.43),y=a(x-6)2+h還過點(diǎn)(0,2)點(diǎn)時分別得出h的取值范圍,即可得出答案.
解答:解:(1)∵h(yuǎn)=2.6,球從O點(diǎn)正上方2m的A處發(fā)出,
∴y=a(x-6)2+h過(0,2)點(diǎn),
∴2=a(0-6)2+2.6,
解得:a=-,
故y與x的關(guān)系式為:y=-(x-6)2+2.6,

(2)當(dāng)x=9時,y=-(x-6)2+2.6=2.45>2.43,
所以球能過球網(wǎng);
當(dāng)y=0時,,
解得:x1=6+2>18,x2=6-2(舍去)
故會出界;

(3)當(dāng)球正好過點(diǎn)(18,0)時,y=a(x-6)2+h還過點(diǎn)(0,2)點(diǎn),代入解析式得:
,
解得:
此時二次函數(shù)解析式為:y=-(x-6)2+,
此時球若不出邊界h≥
當(dāng)球剛能過網(wǎng),此時函數(shù)解析式過(9,2.43),y=a(x-6)2+h還過點(diǎn)(0,2)點(diǎn),代入解析式得:

解得:,
此時球要過網(wǎng)h≥
故若球一定能越過球網(wǎng),又不出邊界,h的取值范圍是:h≥
點(diǎn)評:此題主要考查了二次函數(shù)的應(yīng)用題,求范圍的問題,可以利用臨界點(diǎn)法求出自變量的值,再根據(jù)題意確定范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安徽)如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+2.6.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m.
(1)求y與x的關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)球能否越過球網(wǎng)?球會不會出界?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省泰州市泰興市西城中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省長春地區(qū)九年級下學(xué)期教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2的點(diǎn)A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度)與運(yùn)行的水平距離滿足關(guān)系式,已知球網(wǎng)與O點(diǎn)的水平距離為9,高度為2.43,球場的邊界距O點(diǎn)水平距離為18。

(1)當(dāng)時,求的關(guān)系式(不要求寫出自變量的取值范圍);

(2)當(dāng)時,球能否越過球網(wǎng)?球會不會出界,請說明理由;

(3)若球一定能越過球網(wǎng),又不出邊界,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案