如圖,矩形OABC的邊OA、OC都在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,3),動點P從O點出發(fā)在線段OA上以每秒2個單位長度的速度向終點A運動,點D在對角線AC上,且AD=2,設(shè)運動時間為t秒.
(1)請寫出△APD的面積S關(guān)于t 的函數(shù)關(guān)系式______,此時t的取值范圍是______.
(2)若在動點P從O點出發(fā)的同時,有一動點Q從A點出發(fā),在線段AC上以每秒1個單位長度的速度向點C運動,動點P停止時,點Q也隨之停止,請問在運動過程中,當(dāng)t為何值時,CP⊥PQ?
(3)在點P的運動過程中,是否存在以A、D、P為頂點的三角形是等腰三角形?若存在,請求出此時t的值和對應(yīng)的點P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)過點D作DE⊥OA,然后根據(jù)勾股定理求出AC的長度,再根據(jù)平行,利用對應(yīng)邊成比例列式求出DE的長度,然后根據(jù)三角形的面積公式列式即可得解,再根據(jù)路程、速度與時間的關(guān)系求t的取值范圍;
(2)過點Q作QF⊥OA于點F,然后判定△COP和△PQF相似,利用∠OAC的正弦求出QF的長度,再表示出PF的長度,然后根據(jù)相似三角形對應(yīng)邊成比例列出比例式計算即可求出t的值;
(3)因為等腰三角形的腰不明確,所以分①AD=AP時,②AD=PD時,底邊為AP,③AP=PD時,底邊為AD,然后分別列式進行計算求解.
解答:解:(1)過點D作DE⊥OA,交OA于點E,
∵點B(4,3),四邊形ABCD是矩形,
∴OA=BC=4,AB=OC=3,
∴點A(4,0),點C(0,3),
∴AC===5,
∵DE⊥OA,
∴DE∥OC,
=,
∵AD=2,
=,
解得DE=
∵P的速度是每秒2個單位長度,
∴OP=2t,
∴AP=OA-OP=4-2t,
∴S△APD=AP•DE=×(4-2t)×=-t+,
∵AC=4,
AC=2,
∴t的取值范圍是0≤t≤2;

(2)如圖,過點Q作QF⊥OA于點F,
∵CP⊥PQ,
∴∠CPQ=90°,
∴∠QPA+∠CPO=90°,
∵∠CPO+∠OCP=90°,
∴∠QPA=∠OCP,
∴△COP∽△PQF,
=,
∵Q的速度是每秒1個單位長度,
∴AQ=t,
∴QF=AQ•sin∠OAC=t•=t,
AF=AQ•cos∠OAC=t•=t,
∴PF=OA-OP-AF=4-2t-t=4-t,
=,
解得t=,
當(dāng)t=秒時,CP⊥PQ;


(3)存在三種情況,使△PDA為等腰三角形.
①AD=AP時,∵AD=2,AD=AP,
∴AP=2,
∴OP=OA-AP=4-2=2,
==1(秒),
∴當(dāng)t=1秒時,△PDA是等腰三角形;
②AD=PD時,底邊為AP,
∵AD=PD,DE⊥OA,
∴AE=PE,
∵DE∥OC,
=
=,
解得AE=,
∴AP=2AE=
∴OP=OA-AP=4-=,
OP=×=,
即當(dāng)t=秒時,△PDA是等腰三角形;
③AP=PD時,底邊為AD,
過點P作PF⊥AD,
∵AP=PD,
∴AF=DF=AD=×2=1,
∵EF⊥AD,∠CAO=∠DAE,
∴△APF∽△ACO,
=,
=,
解得AP=
∴OP=OA-AP=4-=,
OP=×=
即當(dāng)t=秒時,△PDA是等腰三角形.
點評:本題主要考查了矩形的性質(zhì),三角形的面積以及等腰三角形的判定,綜合性較強,難度較大,需要仔細(xì)分析并細(xì)心進行計算,(3)中要注意分情況進行討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點A在x軸上,頂點C在y軸上,把△OAB沿OB翻折,使點A落在點D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過點B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點,且CM=2OM,N為BC的中點,BM與AN交于點E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點F的坐標(biāo);
(2)求過A、F、C三點的拋物線解析式;
(3)在拋物線上是否存在一點P,使得△ACP為以A為直角頂點的直角三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習(xí)冊答案