【題目】在平面直角坐標(biāo)系中,將點P(2,)繞原點O順時針旋轉(zhuǎn)90°后得到點P′,則點P′的坐標(biāo)是( 。

A. (-2, B. ,2) C. (2,- D. ,-2)

【答案】D

【解析】

如圖,過P、P′兩點分別作x軸,y軸的垂線,垂足為A、B,由旋轉(zhuǎn)90°可知,△OPA≌△OP′B,則P′B=PA=,BO=OA=2,由此確定點P′的坐標(biāo).

如圖,過P、P′兩點分別作x軸,y軸的垂線,垂足為A、B,
∵線段OP繞點O順時針旋轉(zhuǎn)90°,
∴∠POP′=∠AOB=90°,
∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,
∴△OAP≌△OBP′,即P′B=PA=,BO=OA=2,
∴P′(,-2).

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線的表達式為A,B的坐標(biāo)分別為

(1,0),(0,2),直線AB與直線相交于點P

(1)求直線AB的表達式;

(2)求點P的坐標(biāo);

(3)若直線上存在一點C,使得APC的面積是APO的面積的2倍,直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB,CD相交于點O,OE平分∠AOD,F(xiàn)O⊥AB,垂足為O,∠BOD=∠DOE.

(1)求BOF的度數(shù);

(2)請寫出圖中與BOD相等的所有的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進一步提升企業(yè)產(chǎn)品競爭力,某企業(yè)加大了科研經(jīng)費的投入,2016年該企業(yè)投入科研經(jīng)費5000萬元,2018年投入科研經(jīng)費7200萬元,假設(shè)該企業(yè)這兩年投入科研經(jīng)費的年平均增長率相同.

求這兩年該企業(yè)投入科研經(jīng)費的年平均增長率.

若該企業(yè)科研經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2020年該企業(yè)投入科研經(jīng)費多少萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形OAB中,∠O=60°,OA=4 ,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA, ,OB上,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某工廠貨物傳送帶的平面示意圖,為提高傳送過程的安全性,工廠計劃改造傳動帶與地面的夾角,使其AB的坡角由原來的43°改為30°.已知原傳送帶AB長為5米.求新舊貨物傳送帶著地點B、C之間相距多遠?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin43°≈0.68,cos43°≈0.73,tan43°≈0.93, ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點F在CD上,且CF:DF=1:2,則SCEF:SABCD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的校園生活,某校舉行“與愛同行”朗誦比賽,賽后整理參賽同學(xué)的成績,繪制成如下不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題.

組別

成績x(分)

頻數(shù)(人數(shù))

A

8.0≤x<8.5

a

B

8.5≤x<9.0

8

C

9.0≤x<9.5

15

D

9.5≤x<10

3


(1)圖中a= , 這次比賽成績的眾數(shù)落在組;
(2)請補全頻數(shù)分布直方圖;
(3)學(xué)校決定選派本次比賽成績最好的3人參加全市中學(xué)生朗誦比賽,并為參賽選手準(zhǔn)備了2件白色、1件藍色上衣和黑色、藍色、白色的褲子各1條,小軍先選,他從中隨機選取一件上衣和一條褲子搭配成一套衣服,請用畫樹狀圖法或列表法求出上衣和褲子搭配成不同顏色的概率.

查看答案和解析>>

同步練習(xí)冊答案