附加題:如圖,已知四邊形ABCD是邊長(zhǎng)為2的正方形,以對(duì)角線BD為邊作正三角形BDE,過(guò)E作DA的延長(zhǎng)線的垂線EF,垂足為F.
(1)找出圖中與EF相等的線段,并證明你的結(jié)論;
(2)求AF的長(zhǎng).
(1)AF=EF;
理由如下:連接AE,
∵△DBE是正三角形,
∴EB=ED.
∵AD=AB,AE=AE,
∴△ABE≌△ADE.
∴∠BEA=∠DEA=
1
2
×60°=30°.
∵∠EDA=∠EDB-∠ADB=60°-45°=15°,
∴∠EAF=∠AED+∠ADE=45°.
∵EF⊥AD,
∴△EFA是等腰直角三角形.
∴EF=AF.

(2)設(shè)AF=x,
∵AD=2,BD=2
2
=ED,F(xiàn)D=2+x,
在Rt△EFD中,
由勾股定理得EF2+FD2=ED2
即x2+(2+x)2=(2
2
2
∴x=
3
-1(x=-
3
-1舍去),∴AF=
3
-1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)是3cm,一個(gè)邊長(zhǎng)為1cm的小正方形沿著正方形ABCD的邊AB?BC?CD?DA?AB連續(xù)地翻轉(zhuǎn),那么這個(gè)小正方形第一次回到起始位置時(shí),它的方向是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀下列材料:
小明遇到一個(gè)問(wèn)題:如圖1,正方形ABCD中,E、F、G、H分別是AB、BC、CD和DA邊上靠近A、B、C、D的n等分點(diǎn),連接AF、BG、CH、DE,形成四邊形MNPQ.求四邊形MNPQ與正方形ABCD的面積比(用含n的代數(shù)式表示).
小明的做法是:
先取n=2,如圖2,將△ABN繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90゜至△CBN′,再將△ADM繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90゜至△CDM′,得到5個(gè)小正方形,所以四邊形MNPQ與正方形ABCD的面積比是
1
5
;
請(qǐng)你參考小明的做法,解決下列問(wèn)題:
(1)取n=3,如圖3,四邊形MNPQ與正方形ABCD的面積比為_(kāi)_____(直接寫(xiě)出結(jié)果);
(2)在圖4中探究,n=4時(shí)四邊形MNPQ與正方形ABCD的面積比為_(kāi)_____(在圖4上畫(huà)圖并直接寫(xiě)出結(jié)果);
(3)猜想:當(dāng)E、F、G、H分別是AB、BC、CD和DA邊上靠近A、B、C、D的n等分點(diǎn)時(shí),四邊形MNPQ與正方形ABCD的面積比為_(kāi)_____(用含n的代數(shù)式表示);
(4)圖5是矩形紙片剪去一個(gè)小矩形后的示意圖,請(qǐng)你將它剪成三塊后再拼成正方形(在圖5中畫(huà)出并指明拼接后的正方形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中點(diǎn),以D作DE⊥AC與CB的延長(zhǎng)線交于E,以AB、BE為鄰邊作長(zhǎng)方形ABEF,連接DF,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,∠ACB的平分線CE交BO于點(diǎn)E,過(guò)點(diǎn)B作BF⊥CE,垂足為F,交AC于點(diǎn)G,則
BF
CE
=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O.點(diǎn)E是線段DO上一點(diǎn),連接CE.點(diǎn)F是∠OCE的平分線上一點(diǎn),且BF⊥CF與CO相交于點(diǎn)M.點(diǎn)G是線段CE上一點(diǎn),且CO=CG.
(1)若OF=4,求FG的長(zhǎng);
(2)求證:BF=OG+CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD中,點(diǎn)O是對(duì)角線DB的中點(diǎn),點(diǎn)P是DB所在直線上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測(cè)AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立???寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P在DB的長(zhǎng)延長(zhǎng)線上時(shí),請(qǐng)將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫(xiě)出結(jié)論;若不成立,請(qǐng)寫(xiě)出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上,BE=CF,連接AE、BF相交于點(diǎn)G.現(xiàn)給出了四個(gè)結(jié)論:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.請(qǐng)?jiān)谶@些結(jié)論中,選擇一個(gè)你認(rèn)為正確的結(jié)論,并加以證明.結(jié)論:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

剪紙是濰坊特有的民間藝術(shù),在如圖所示的四個(gè)剪紙圖案中.既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案