如圖,已知正方形ABCD中,對(duì)角線(xiàn)AC、BD交于O點(diǎn),過(guò)O點(diǎn)作OE⊥OF分別交DC于E,交BC于F,∠FEC的角平分線(xiàn)EP交直線(xiàn)AC于P
(1)求證:OE=OF;
(2)寫(xiě)出線(xiàn)段EF、PC、BC之間的一個(gè)等量關(guān)系式,并證明你的結(jié)論.
(1)證明:∵正方形ABCD中,對(duì)角線(xiàn)AC、BD交于O點(diǎn),
∴AC⊥BD,
∴∠BOC=∠DOC=90°,
∴∠BOF+∠FOP=90°,
∵OE⊥OF,
∴∠FOE=90°,
∴∠EOC+∠FOP=90°
∴∠BOF=∠EOC,
又∵OB=OC,∠OBF=∠DCE=45°,
∴△BOF≌△COE,
∴OE=OF;

(2)EF+
2
CP=BC,
證明:∵△BOF≌△COE,
∴OE=OF,∠OEF=∠OFE=45°.
∵∠FEC的角平分線(xiàn)EP交直線(xiàn)AC于P,
∴∠FEP=∠CEP.
∴∠OEP=∠OPE.
∴OE=OP.
∴EF=
2
OE=
2
OP,
∵BC=
2
OC=
2
(OP+PC),
∴EF+
2
CP=BC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)等腰梯形的上底長(zhǎng)為4cm,下底長(zhǎng)為10cm,腰長(zhǎng)為5cm,那么這個(gè)梯形的高為_(kāi)_____cm,面積為_(kāi)_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,操作:把正方形CGEF的對(duì)角線(xiàn)CE放在正方形ABCD的邊BC的延長(zhǎng)線(xiàn)上(CG>BC),取線(xiàn)段AE的中點(diǎn)M.
探究:線(xiàn)段MD、MF的關(guān)系,并加以證明.
說(shuō)明:(1)如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,請(qǐng)你把探索過(guò)程中的某種思路寫(xiě)出來(lái)(要求至少寫(xiě)3步);
(2)在你經(jīng)歷說(shuō)明(1)的過(guò)程后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.
注意:選、偻瓿勺C明得10分;選、谕瓿勺C明得7分;選取③完成證明得5分.
①DM的延長(zhǎng)線(xiàn)交CE于點(diǎn)N,且AD=NE;②將正方形CGEF6繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°(如圖),其他條件不變;③在②的條件下,且CF=2AD.
附加題:將正方形CGEF繞點(diǎn)C旋轉(zhuǎn)任意角度后(如圖),其他條件不變.探究:線(xiàn)段MD、MF的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四邊形ABCD是正方形,分別過(guò)A、C兩點(diǎn)作l1l2,作BM⊥l1于M,DN⊥l1于N,直線(xiàn)MB、ND分別交l2于Q、P.求證:四邊形PQMN是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將正方形的四個(gè)頂點(diǎn)用線(xiàn)段連接起來(lái),怎樣的連線(xiàn)最短?研究發(fā)現(xiàn),并非連對(duì)角線(xiàn)最短,而是如圖的連線(xiàn)更短(即用線(xiàn)段AE、BE、EF、CF、DF把四個(gè)頂點(diǎn)連接起來(lái)).已知圖中ABCD是正方形,∠BAE=∠ABE=∠FDC=∠FCD=30°,∠AEF=∠DFE且AE=DF.
(1)請(qǐng)你證明ADEF;
(2)設(shè)正方形邊長(zhǎng)為2,計(jì)算連線(xiàn)AE+BE+EF+CF+DF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD中,E是AD上一點(diǎn)(E與A、D不重合).連接CE,將△CED繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到△AFD.
(1)猜想CE和AF之間的關(guān)系,并進(jìn)行證明.
(2)連接EF,若∠ECD=30°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)能與△CBP′重合,若PB=3,則PP′=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為E、F.
(1)求證:DE=DF;
(2)只添加一個(gè)條件,使四邊形EDFA是正方形.請(qǐng)你至少寫(xiě)出兩種不同的添加方法.(不另外添加輔助線(xiàn),無(wú)需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,線(xiàn)段AB=CD=10cm.弧BC和弧DA是弧長(zhǎng)與半徑都相等的圓弧,曲邊三角形BCD的面積,是以D為圓心,DC為半徑的圓面積的
1
4
,則陰影部分的面積是(  )cm2
A.25πB.50πC.100D.200

查看答案和解析>>

同步練習(xí)冊(cè)答案