【題目】如圖,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A’B’C.若=40°,=110°,則∠的度數(shù)為________.
【答案】80°
【解析】
首先根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形內(nèi)角和可得∠A′CB′的度數(shù),進(jìn)而得到∠ACB的度數(shù),再由條件將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度數(shù).
根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°-110°-40°=30°,
∴∠ACB=30°,
∵將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=2,BC=4,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條拋物線與的頂點(diǎn)相同.
(1)求拋物線的解析式;
(2)點(diǎn)是拋物找在第四象限內(nèi)圖象上的一動(dòng)點(diǎn),過點(diǎn)作軸,為垂足,求的最大值;
(3)設(shè)拋物線的頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為,問在的對稱軸上是否存在點(diǎn),使線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,且點(diǎn)恰好落在拋物線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(1,0),點(diǎn)的橫坐標(biāo)為2,將點(diǎn) 繞點(diǎn)P旋轉(zhuǎn),使它的對應(yīng)點(diǎn)恰好落在軸上(不與點(diǎn)重合);再將點(diǎn)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn).
(1)直接寫出點(diǎn)和點(diǎn)C的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,繞點(diǎn)順時(shí)針旋轉(zhuǎn)后得到.
(1)畫出;(其中、對應(yīng)點(diǎn)分別是、)
(2)分別畫出旋轉(zhuǎn)過程中,點(diǎn)點(diǎn)經(jīng)過的路徑;
①求點(diǎn)經(jīng)過的路徑的長;
②求線段所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶網(wǎng)店銷售臺(tái)燈,成本為每個(gè)30元,銷售大數(shù)據(jù)分析表明,當(dāng)每個(gè)臺(tái)燈售價(jià)為40元時(shí),平均每月售出600個(gè),若售價(jià)每上漲1元,其月銷量就減少20個(gè),若售價(jià)每下降1元,其月銷量就增加200個(gè).
(1)若售價(jià)上漲元,每月能售出___________個(gè)臺(tái)燈.
(2)為迎接“雙十一”,該網(wǎng)店決定降價(jià)銷售,在庫存為1210個(gè)臺(tái)燈的情況下,若預(yù)計(jì)月獲利恰好為8400元,求每個(gè)臺(tái)燈的售價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為9,則k的值為( )
A. 3B. 6C. 9D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=6,AD=10,點(diǎn)P在邊AD上運(yùn)動(dòng),以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點(diǎn).
(1)如圖2,當(dāng)⊙P與邊CD相切于點(diǎn)F時(shí),求AP的長;
(2)不難發(fā)現(xiàn),當(dāng)⊙P與邊CD相切時(shí),⊙P與平行四邊形ABCD的邊有三個(gè)公共點(diǎn),隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化,若公共點(diǎn)的個(gè)數(shù)為4,直接寫出相對應(yīng)的AP的值的取值范圍____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com