【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積.
【答案】(1)y=﹣x2+4x+5;(2)15.
【解析】
(1)由A、C、(1,8)三點在拋物線上,根據(jù)待定系數(shù)法即可求出拋物線的解析式;
(2)由B、C兩點的坐標求得直線BC的解析式;過點M作MN∥y軸交BC軸于點N,則△MCB的面積=△MCN的面積+△MNB的面積=
(1)∵A(﹣1,0),C(0,5),(1,8)三點在拋物線y=ax2+bx+c上,
∴,
解方程組,得,
故拋物線的解析式為y=﹣x2+4x+5;
(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,
∴M(2,9),B(5,0),
設(shè)直線BC的解析式為:y=kx+b,
解得,
則直線BC的解析式為:y=﹣x+5.
過點M作MN∥y軸交BC軸于點N,
則△MCB的面積=△MCN的面積+△MNB的面積=
當x=2時,y=﹣2+5=3,則N(2,3),
則MN=9﹣3=6,
則
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù) y=ax2+bx 的圖象與 x 軸交于點 O(0,0)和 點 B,拋物線的對稱軸是直線 x=3.點 A 是拋物線在第一象限上的一個動點, 過點 A 作 AC⊥x 軸,垂足為 C.S△AOB=3S△ABC,AC2=OCBC.
(1)求該二次函數(shù)的解析式;
(2)拋物線的對稱軸與 x 軸交于點 M.連接 AM,點 N 是線段 OA 上的一點.當 ∠AMN=∠AOM 時,求點 N 的坐標;
(3)點 P 是拋物線上的一個動點.點 Q 是 y 軸上的一動點.當以 A,B,P,Q 四個點為頂點的四邊形為平行四邊形時,直接寫出點 P 坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,點E是AD上一點,過點B作BF∥EC,交AD的延長線于點F,連接BE,CF.
(1)求證:△BDF≌△CDE;
(2)當ED與BC滿足什么數(shù)量關(guān)系時,四邊形BECF是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線y=﹣x2+x+2與x軸交于A、B兩點,與y軸交于C點,拋物線的頂點為Q,連接BC.
(1)求直線BC的解析式;
(2)點P是直線BC上方拋物線上的一點,過點P作PD⊥BC于點D,在直線BC上有一動點M,當線段PD最大時,求PM+MB最小值;
(3)如圖②,直線AQ交y軸于G,取線段BC的中點K,連接OK,將△GOK沿直線AQ平移得△G′O'K′,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y′,當拋物線y′經(jīng)過點Q時,記頂點為Q′,是否存在以G'、K'、Q'為頂點的三角形是等腰三角形?若存在,求出點G′的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O分別交AC,BC于點E,F兩點,過點F作FG⊥AB于點G.
(1)試判斷FG與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,CD=5,求FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(-2,0),B(2,0),點P在直線上,若△ABP是直角三角形,則點P的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=α,∠BCD=β,點E,F是四邊形ABCD內(nèi)的兩個點,滿足∠EAF=,∠ECF=,連接BE,EF,FD.
(1)如圖1,當α=β時,判斷∠ABE和∠ADF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)當α≠β時,用等式表示線段BE,EF,FD之間的數(shù)量關(guān)系(直接寫出即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】紅樹林學校在七年級新生中舉行了全員參加的“防溺水”安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學的成績(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分數(shù) 人數(shù) 班級 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;
(3)為了讓學生重視安全知識的學習,學校將給競賽成績滿分的同學頒發(fā)獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com