【題目】如圖,對折矩形紙片ABCD使AD與BC重合,得到折痕MN,再把紙片展平.E是AD上一點,將△ABE沿BE折疊,使點A的對應(yīng)點A′落在MN上.若CD=5,則BE的長是_____.
【答案】
【解析】
在Rt△A'BM中,利用軸對稱的性質(zhì)與銳角三角函數(shù)求出∠BA′M=30°,再證明∠ABE=30°即可解決問題.
解:∵將矩形紙片ABCD對折一次,使邊AD與BC重合,得到折痕MN,
∴AB=2BM,∠A′MB=90°,MN∥BC.
∵將△ABE沿BE折疊,使點A的對應(yīng)點A′落在MN上.
∴A′B=AB=2BM.
在Rt△A′MB中,∵∠A′MB=90°,
∴sin∠MA′B= =,
∴∠MA′B=30°,
∵MN∥BC,
∴∠CBA′=∠MA′B=30°,
∵∠ABC=90°, ∴∠ABA′=60°,
∴∠ABE=∠EBA′=30°,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,,點E為BC的中點,以CD為直徑在正方形外部作半圓CFD,點F為半圓的中點,連接,圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點D是邊BC上一動點(不與B、C重合),,DE交AC于點E,且.下列結(jié)論:①∽;②當(dāng)時,與全等;③為直角三角形時,BD等于8或.其中正確的有__________.(選填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批成本為每件40元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(元之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量與銷售單價之間的函數(shù)關(guān)系式;
(2)若商店要使銷售該商品每天獲得的利潤等于1000元,每天的銷售量應(yīng)為多少件?
(3)若商店按單價不低于成本價,且不高于65元銷售,則銷售單價定為多少元時,才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校7名學(xué)生在某次測量體溫(單位:℃)時得到如下數(shù)據(jù):36.3,36.4,36.5,36.7,36.6,36.5,36.5,對這組數(shù)據(jù)描述正確的是( 。
A.眾數(shù)是36.5B.中位數(shù)是36.7
C.平均數(shù)是36.6D.方差是0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷售甲,乙兩種型號水杯,進(jìn)價和售價均保持不變,其中甲種型號水杯進(jìn)價為25元/個,乙種型號水杯進(jìn)價為45元/個,下表是前兩月兩種型號水杯的銷售情況:
時間 | 銷售數(shù)量(個) | 銷售收入(元)(銷售收入=售價×銷售數(shù)量) | |
甲種型號 | 乙種型號 | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號水杯的售價;
(2)第三月超市計劃再購進(jìn)甲、乙兩種型號水杯共80個,這批水杯進(jìn)貨的預(yù)算成本不超過2600元,且甲種型號水杯最多購進(jìn)55個,在80個水杯全部售完的情況下設(shè)購進(jìn)甲種號水杯a個,利潤為w元,寫出w與a的函數(shù)關(guān)系式,并求出第三月的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在BC邊上,連接AE,∠DAE的平分線AG與CD邊交于點G,與BC的延長線交于點F.設(shè)=λ(λ>0).
(1)若AB=2,λ=1,求線段CF的長.
(2)連接EG,若EG⊥AF,
①求證:點G為CD邊的中點.
②求λ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過A (0,3),B (4,3)兩點,與x軸交于點E,F,以AB為邊作矩形ABCD,其中CD邊經(jīng)過拋物線的項點M,點P是拋物線上一動點(點P不與點A,B重合),過點P作y軸的平行線1與直線AB交于點G,與直線BD交于點H,連接AF交直線BD于點N.
(1)求該拋物線的解析式以及頂點M的坐標(biāo);
(2)當(dāng)線段PH=2GH時,求點P的坐標(biāo);
(3)在拋物線上是否存在點P,使得以點P,E,N,F為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會吉祥物“冰墩墩”以熊貓為原型進(jìn)行設(shè)計創(chuàng)作,北京冬殘奧會吉祥物“雪容融”則以中國標(biāo)志性符號的燈籠為創(chuàng)意進(jìn)行設(shè)計創(chuàng)作“冰墩墩”和“雪容融”是一個非常完美的搭:配和組合,是中國文化和奧林匹克精神又一次完美的結(jié)合莉莉有“冰墩墩”和“雪容融”的紀(jì)念郵票各2張(如圖),這4張郵票背面完全相同,莉莉想給好友小婷和小華各送一張紀(jì)念郵票,她先讓小婷從這4張郵票中隨機(jī)抽取一張,然后,再讓小華從剩下的3張中隨機(jī)抽取一張.
(1)小婷抽到“冰墩墩”的紀(jì)念郵票的概率是__________.
(2)利用樹狀圖或列表法求小婷和小華均抽到“雪容融”的紀(jì)念郵票的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com