【題目】如圖,AC=BC,∠ACB=90°,AE平分∠BAC交BC于點D,BF⊥AE,交AC的延長線于點F,且垂足為E,則下列結(jié)論①AD=BF;②BF=AF;③AC+CD=AB;④AB=BF:⑤AD=2BE.其中正確的結(jié)論有( 。﹤
A. 5B. 4C. 3D. 2
【答案】C
【解析】
根據(jù)∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠F=∠ADC,證△BCF≌△ACD,根據(jù)全等三角形的性質(zhì)即可判斷①②;假如AC+CD=AB,求出∠F+∠FBC=90°,即可判斷③④,證根據(jù)全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判斷⑤.
解:∵∠ACB=90°,BF⊥AE,
∴∠ACB=∠BED=∠BCF=90°,
∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,
∴∠F=∠BDE,
∵∠BDE=∠ADC,
∴∠F=∠ADC,
∵AC=BC,
∴△BCF≌△ACD,
∴AD=BF,∴①正確;
∵AF>AD,
∴BF≠AF②錯誤;
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
又∵AB=AF,
∴AC+CD=AB.
∴③正確;
∵BF=AC,AC<AF=AB,
∴AB>BF,
∴④錯誤;
由△BCF≌△ACD,
∴AD=BF,
∵AE平分∠BAF,AE⊥BF,
∴∠BEA=∠FEA=90°,∠BAE=∠FAE,
∵AE=AE,∴△BEA≌△FEA,
∴BE=EF,
∴⑤正確;
綜上所述,正確的結(jié)論是:①③⑤,共有3個.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,AC分別是半⊙O的直徑和弦,OD⊥AC于點D,過點A作半⊙O的切線AP,AP與OD的延長線交于點P.連接PC并延長與AB的延長線交于點F.
(1)求證:PC是半⊙O的切線;
(2)若∠CAB=30°,AB=10,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(m-1)x2-x-2=0.
(1)若x=-1是方程的一個根,求m的值和方程的另一根;
(2)當(dāng)m為何實數(shù)時,方程有兩個不相等的實數(shù)根?
(3)若x1,x2是方程的兩個實數(shù)根,且xx2+x1x=-,試求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將掛好彩旗的旗桿垂直插在操場上,旗桿從旗頂?shù)降孛娴母叨葹?/span>320cm,在無風(fēng)的天氣里,彩旗自然下垂,如圖所示,
(1)求彩旗下垂時最低處離地面的最小高度h.彩旗完全展平時的尺寸如圖的長方形(單位:cm)
(2)商店彩旗的標(biāo)價為每面40元,旗桿的標(biāo)價為每根20元,學(xué)校計劃購買彩旗60面,旗桿50根,由于數(shù)量較多商店決定給予學(xué)校優(yōu)惠,其中彩旗每面優(yōu)惠10%,旗桿每根優(yōu)惠a%,這樣,學(xué)校彩旗又多購買了2a%,旗桿的數(shù)量不變,這樣總共花費3542元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標(biāo)分別為A(﹣1,﹣2),B(﹣1,﹣4),C(2,﹣3).
(1)將△ABC先向右平移4個單位,再向上平移6個單位,得到△A1B1C1,作出△A1B1C1,線段AC在平移過程中掃的面積為 ;
(2)作出△A1B1C1關(guān)于y軸對稱的圖形△A2B2C2,則坐標(biāo)C2為 ;
(3)若△ABD與△ABC全等,則點D的坐標(biāo)為 (點C與點D不重合)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對泄漏有害氣體進(jìn)行清理,線段DE表示氣體泄漏時車間內(nèi)危險檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關(guān)系(0≤x≤40),反比例函數(shù)y=對應(yīng)曲線EF表示氣體泄漏控制之后車間危險檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關(guān)系(40≤x≤?).根據(jù)圖象解答下列問題:
(1)危險檢測表在氣體泄漏之初顯示的數(shù)據(jù)是 ;
(2)求反比例函數(shù)y=的表達(dá)式,并確定車間內(nèi)危險檢測表恢復(fù)到氣體泄漏之初數(shù)據(jù)時對應(yīng)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ABC與∠ACB的平分線交于點P.
(1)當(dāng)∠A=40°,∠ABC=60°時,求∠BPC的度數(shù);
(2)當(dāng)∠A=α°時,求∠BPC的度數(shù).(用α的代數(shù)式表示)
(3)小明研究時發(fā)現(xiàn):如果延長AB至D,再過點B作BQ⊥BP,那么BQ就是∠CBD的平分線。請你證明小明的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長線上一點,AC=3CD,過點D作DH∥AB,交BC的延長線于點H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com