【題目】已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯結AE并延長,交邊BC于點F.
(1)求∠EAD的余切值;
(2)求的值.
【答案】(1)∠EAD的余切值為;(2)=.
【解析】
(1)在Rt△ADB中,根據AB=13,cos∠BAC=,求出AD的長,由勾股定理求出BD的長,進而可求出DE的長,然后根據余切的定義求∠EAD的余切即可;
(2)過D作DG∥AF交BC于G,由平行線分線段成比例定理可得CD:AD=CG:FG=3:5,從而可設CD=3x,AD=5x,再由EF∥DG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.
(1)∵BD⊥AC,
∴∠ADE=90°,
Rt△ADB中,AB=13,cos∠BAC=,
∴AD=5, 由勾股定理得:BD=12,
∵E是BD的中點,
∴ED=6,
∴∠EAD的余切==;
(2)過D作DG∥AF交BC于G,
∵AC=8,AD=5, ∴CD=3,
∵DG∥AF,
∴=,
設CD=3x,AD=5x,
∵EF∥DG,BE=ED,
∴BF=FG=5x,
∴==.
科目:初中數學 來源: 題型:
【題目】某校選拔射擊運動員參加比賽,甲、乙兩人在相同的條件下連續(xù)射靶各次,命中的環(huán)數(均為不大于10的正整數)如表:
次數 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | ||||||||||
乙 |
(1)當為何值時,選派乙去參加比賽更合適,請說明理由;
(2)若乙最后兩次射靶均命中環(huán),則選派誰去參加比賽更合適?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某專賣店有兩種商品,已知在打折前,買件商品和件商品用了元,買件商品和件商品用了元.兩種商品打相同折以后,某人買件商品和件商品一共比不打折少花元,請問兩種商品打折前各多少錢?打了多少折?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?
(2)某同學測試成績?yōu)?/span>70分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯結.
(1)若C是半徑OB中點,求的正弦值;
(2)若E是弧AB的中點,求證:;
(3)聯結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC繞點B按逆時針方向旋轉得到△EBD,點E、點D分別與點A、點C對應,且點D在邊AC上,邊DE交邊AB于點F,△BDC∽△ABC.已知,AC=5,那么△DBF的面積等于_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】水果市場的甲、乙兩家商店中都有批發(fā)某種水果,批發(fā)該種水果x千克時,在甲、乙兩家商店所花的錢分別為y1元和y2元,已知y1、y2關于x的函數圖象分別為如圖所示的折線OAB和射線OC.
(1)當x的取值為 時,在甲乙兩家店所花錢一樣多?
(2)當x的取值為 時,在乙店批發(fā)比較便宜?
(3)如果批發(fā)30千克該水果時,在甲店批發(fā)比在乙店批發(fā)便宜50元,求射線AB的表達式,并寫出定義域.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在AD邊上,點F在AD的延長線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com