【題目】小明早晨從家里出發(fā)勻速步行去上學(xué),小明的媽媽在小明出發(fā)后10分鐘,發(fā)現(xiàn)小明的數(shù)學(xué)課本沒(méi)帶,于是她帶上課本立即勻速騎車按小明上學(xué)的路線追趕小明,結(jié)果與小明同時(shí)到達(dá)學(xué)校.已知小明在整個(gè)上學(xué)途中,他出發(fā)后t分鐘時(shí),他所在的位置與家的距離為s千米,且s與t之間的函數(shù)關(guān)系的圖象如圖中的折線段OA﹣AB所示.
(1)試求折線段OA﹣AB所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)請(qǐng)解釋圖中線段AB的實(shí)際意義;
(3)請(qǐng)?jiān)谒o的圖中畫(huà)出小明的媽媽在追趕小明的過(guò)程中,她所在位置與家的距離s(千米)與小明出發(fā)后的時(shí)間t(分鐘)之間函數(shù)關(guān)系的圖象.(友情提醒:請(qǐng)對(duì)畫(huà)出的圖象用數(shù)據(jù)作適當(dāng)?shù)臉?biāo)注)
【答案】
(1)解:線段OA對(duì)應(yīng)的函數(shù)關(guān)系式為:s= t(0≤t≤12)
線段AB對(duì)應(yīng)的函數(shù)關(guān)系式為:s=1(12<t≤20)
(2)解:圖中線段AB的實(shí)際意義是:
小明出發(fā)12分鐘后,沿著以他家為圓心,1千米為半徑的圓弧形道路上勻速步行了8分鐘
(3)解:由圖象可知,小明花20分鐘到達(dá)學(xué)校,則小明的媽媽花20﹣10=10分鐘到達(dá)學(xué)校,可知小明媽媽的速度是小明的2倍,即:小明花12分鐘走1千米,則媽媽花6分鐘走1千米,故D(16,1),小明花20﹣12=8分鐘走圓弧形道路,則媽媽花4分鐘走圓弧形道路,故B(20,1).
媽媽的圖象經(jīng)過(guò)(10,0)(16,1)(20,1)如圖中折線段CD﹣DB就是所作圖象.
【解析】(1)OA為正比例函數(shù)圖象,可以用待定系數(shù)法求出;(2)AB段離家距離沒(méi)發(fā)生變化說(shuō)明在以家為圓心做曲線運(yùn)動(dòng);(3)媽媽的速度正好是小明的2倍,所以媽媽走弧線路用(20﹣12)÷2=4分鐘.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】麗水苛公司將“麗水山耕”農(nóng)副產(chǎn)品運(yùn)往杭州市場(chǎng)進(jìn)行銷售.記汽車行駛時(shí)間為t小時(shí),平均速度為v千米/小時(shí)(汽車行駛速度不超過(guò)100千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:
v(千米/小時(shí)) | 75 | 80 | 85 | 90 | 95 |
t(小時(shí)) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;
(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達(dá)杭州市?請(qǐng)說(shuō)明理由:
(3)若汽車到達(dá)杭州市場(chǎng)的行駛時(shí)間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線AB,CD相交于點(diǎn)O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判斷OF與OD的位置關(guān)系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1,四邊形 ABCD 中,∠BAD=∠ADC=∠CBA=90°,AB=AD,點(diǎn) E、F 分別在四邊形 ABCD 的邊 BC、CD 上,∠EAF=45°,點(diǎn) G 在 CD 的延長(zhǎng)線上,BE=DG,連接 AG,求證:EF=BE+FD.
(2)如圖 2,四邊形 ABCD 中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn) E、F 分別在邊BC、CD 上,則當(dāng)∠BAD=2∠EAF 時(shí),仍有 EF=BE+FD 成立嗎?說(shuō)明理由.
(3)如圖 3,四邊形 ABCD 中,∠BAD≠90°,AB=AD,AC 平分∠BCD,AE⊥BC 于 E,AF⊥CD 交 CD 延長(zhǎng)線于 F,若 BC=9,CD=4,則 CE= .(不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小蘭:“小紅,你上周買(mǎi)的筆和筆記本的價(jià)格是多少?”小紅:“哦,…,我忘了!只記得先后買(mǎi)了兩次,第一次買(mǎi)了5支筆和10本筆記本共花了42元錢(qián),第二次買(mǎi)了10支筆和5本筆記本共花了30元錢(qián).”請(qǐng)根據(jù)小紅與小蘭的對(duì)話,求得小紅所買(mǎi)的筆和筆記本的價(jià)格分別是( )
A. 0.8元/支,2.6元/本 B. 1.2元/支,3.6元/本
C. 1.2元/支,2.6元/本 D. 0.8元/支,3.6元/本
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形:
(1)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí),CD=BE嗎?若相等請(qǐng)證明,若不等于請(qǐng)說(shuō)明理由;
(2)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),△AMN還是等邊三角形嗎?若是請(qǐng)證明,若不是,請(qǐng)說(shuō)明理由(可用第一問(wèn)結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】本學(xué)期學(xué)校開(kāi)展以“感受中華傳統(tǒng)美德”為主題的研學(xué)活動(dòng),組織150名學(xué)生參觀歷史博物館和民俗展覽館,每一名學(xué)生只能參加其中一項(xiàng)活動(dòng),共支付票款2000元,票價(jià)信息如下:
地點(diǎn) | 票價(jià) |
歷史博物館 | 10元/人 |
民俗展覽館 | 20元/人 |
(1)請(qǐng)問(wèn)參觀歷史博物館和民俗展覽館的人數(shù)各是多少人?
(2)若學(xué)生都去參觀歷史博物館,則能節(jié)省票款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:一副三角板如圖放置,等腰直角三角板ABC固定不動(dòng),另一塊三角板的直角頂點(diǎn)放在等腰直角三角形的斜邊中點(diǎn)D處,且可以繞點(diǎn)D旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,兩直角邊的交點(diǎn)G、H始終在邊AB、BC上.
在旋轉(zhuǎn)過(guò)程中線段BG和CH大小有何關(guān)系?證明你的結(jié)論.
若,在旋轉(zhuǎn)過(guò)程中四邊形GBHD的面積是否改變?若不變,求出它的值;若改變,求出它的取值范圍.
若交點(diǎn)G、H分別在邊AB、BC的延長(zhǎng)線上,則中的結(jié)論仍然成立嗎?請(qǐng)畫(huà)出相應(yīng)的圖形,直接寫(xiě)出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)M是直線y=2與x軸之間的一個(gè)動(dòng)點(diǎn),且點(diǎn)M是拋物線y= +bx+c的頂點(diǎn),則拋物線y= +bx+c與直線y=1交點(diǎn)的個(gè)數(shù)是( )
A.0個(gè)或1個(gè)
B.0個(gè)或2個(gè)
C.1個(gè)或2個(gè)
D.0個(gè)、1個(gè)或2個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com