【題目】如圖,從點A(0,4)出發(fā)的一束光,經x軸反射,過點C(6,4),求這束光從點A到點C所經過的路徑長度.
【答案】10.
【解析】
首先過點B作BD⊥x軸于D,由A(0,4),C(6,4),即可得OA = CD = 4,OD = 6,由題意易證得△AOB≌△CDB,根據全等三角形即可得OB = BD = 3,AB = CB,又由勾股定理即可求得這束光從點A到點C所經過的路徑的長.
解:如圖,過點C作CD⊥x軸于點D,
∵A(0,4),C(6,4),
∴OA = CD = 4,OD = 6,
由題意得,∠ABO =∠CBD,
∵∠AOB =∠CDB =90°,
∴△AOB≌△CDB,
∴OB = BD = 3,AB = CB,
在Rt△AOB中,,
∴這束光從點A到點C所經過的路徑長度為AB+BC=10.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x+1交x軸于點A,交y軸于點A1,A2,A3,…在直線l上,點B1,B2,B3…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn,頂點Bn的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10厘米,∠B=∠C,BC=8厘米,點D為AB的中點,如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動,當一個點停止運動時,另一個點也隨之停止運動,當點Q的運動速度為 時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新知識一般有兩類:第一類是一般不依賴于其他知識的新知識,如“數”,“字母表示數”這樣的初始性知識;第二類是在某些舊知識的基礎上聯(lián)系,拓展等方式產生的知識,大多數知識是這一類.
(1)多項式乘多項式的法則,是第幾類知識?
(2)在多項式乘多項式之前,我們學習了哪些有關的知識?(寫出三條即可)
(3)請你用已有的知識,從數和形兩個方面說明多項式乘多項式法則,用(a+b)(a-b)來說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,我市某中學決定根據學生的興趣愛好組建課外興趣小組,因此學校隨機抽取了部分同學的興趣愛好進行調查,將收集的數據整理并繪制成下列兩幅統(tǒng)計圖,請根據圖中的信息,完成下列問題:
(1)學校這次調查共抽取了 名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“戲曲”所在扇形的圓心角度數為 ;
(4)設該校共有學生2000名,請你估計該校有多少名學生喜歡書法?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,點P是對角線AC所在直線上的動點,點E在BC邊所在直線上, PE=PB.
(1)如圖1,當點E在線段BC上時,
求證:①PE=PD,②PE⊥PD.
簡析: 由正方形的性質,圖1中有三對全等的三角形,
即△ABC≌△ADC,_______≌_______,和_______≌______,由全等三角形性質,結合條件中PE=PB,易證PE=PD.要證PE⊥PD,考慮到∠ECD = 90°,故在四邊形PECD中,只需證∠PDC +∠PEC=______即可.再結合全等三角形和等腰三角形PBE的性質,結論可證.
(2)如圖2,當點E在線段BC的延長線上時,(1)中的結論是否成立?如果成立,請給出證明;如果不成立,請說明理由;
(3)若AB=1,當△PBE是等邊三角形時,請直接寫出PB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關系如何?試證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等腰△ABC 中,AB=AC,中線 BD 將這個三角形的周長分成 15 和 18 兩部分, 則這個三角形底邊的長為( )
A. 9B. 13C. 9 或 13D. 10 或 12
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com